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Abstract

Algorithmic mechanism design is an important area between computer science and

economics. One of the most fundamental problems in this area is the problem of

scheduling unrelated machines to minimize the makespan. The machines behave

like selfish players: they have to get paid in order to process the tasks, and would

lie about their processing times if they could increase their utility in this way. The

problem was proposed and studied in the seminal paper of Nisan and Ronen, where

it was shown that the approximation ratio of mechanisms is between 2 and n.

In this thesis, we present some recent improvements of the lower bound to 1+
√

2

for three or more machines and to 1 + ϕ for many machines. Since the gap between

the lower bound of 2.618 and the upper bound of n is huge, we also propose an al-

ternative approach to the problem, which first attempts to characterize all truthful

mechanisms and then study their approximation ratio. Towards this goal, we show

that the class of truthful mechanisms for two players (regardless of approximation

ratio) is very limited: tasks can be partitioned in groups allocated by affine min-

imizers (a natural generalization of the well-known VCG mechanism) and groups

allocated by threshold mechanisms.

Finally we generalize a tool we have used in the proof of the 1+
√

2 lower bound:

we give a geometrical characterization of truthfulness for the case of three tasks,

which we believe that might be useful for proving improved lower bounds and which

provides a more complete understanding of truthfulness.

SUBJECT AREA: Algorithms

KEYWORDS: algorithmic game theory, mechanism design, lower bound, character-

ization approximation algorithms
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Chapter 1

Social Choice

“Social choice characterization theorems describe functions which map

from a collection of preferences, views or welfares in various states to a

single preference, view or welfare over the states.”

Kevin Roberts

1.1 Designing a Mechanism

A social choice is a single joint decision which is made after taking into account

the preferences of different individuals affected by the decision. The most common

examples of social choice are voting, auctions and government policy. Mechanism

design takes into account the selfish strategic behavior of the single individuals (in

a game theoretic sense) in order to design an algorithm or protocol that makes this

social choice. The reason we need mechanism design is that the preferences of the

individuals are private. Think that most people keep their political preferences to

themselves and that very often people who really favor a minor party candidate

will vote for the least undesirable from the parties that are most likely to take the

government rather than “throw away their vote”.

In the social choice setting, there are n players and a set of possible outcomes

A. For example when voting for a winner the possible outcomes are the competing

parties, in auctions an allocation of the items for sale to the players.

Each player has a valuation function vi : A → R which gives the value of player i

for every outcome. We denote by Vi ⊆ R
A the set of possible valuation functions for

3



Game-theoretic analysis of networks

player i. The valuation function maps different outcomes to different real numbers.

This is like making the assumption that preferences can be measured using money.

You can think of the real number corresponding to an outcome as the quantity of

“money” the player gains if this outcome is chosen.

The most important reason we need to represent preferences with real values is

that this allows us to use payments. Even though this assumption leaves room for

discussion it is fairly reasonable in many cases. Additionally mechanism design with-

out money faces very strong impossibility theorems like the Gibbard-Satterthwaite

theorem for voting systems, which states that if there are more than two candidates

all non-dictatorial voting rules are manipulable (in the sense that there exist situa-

tions in which a voter would benefit from reporting its preferences insincerely). The

payments are a tool in the hands of the mechanism designer, in the sense that some

social goals are impossible to realize without the use of payments.

The goal of each player is certainly to maximize his utility. But how does a

player’s payment pi combine with his valuation to give the player’s utility, that is

how do payments affect the preferences of a player? We assume (as is common

in most of the literature in economics) that the utility functions are quasi-linear,

that is they are of the form ui(ai, pi) = vi(ai) − pi. They are called so because the

dependence on money is separable from the valuation in a linear way.

A mechanism needs to choose an alternative and specify payments. For each

n-tuple of valuations v = (v1, . . . , vn) the mechanism chooses an outcome a(v) from

the set of possible outcomes A.

Definition 1 (Direct Revelation Mechanism). A direct revelation mechanism con-

sists of a social choice function a : V1 × . . . × Vn → A and a vector of payment

functions p = (p1, . . . , pn) such that pi : V1 × . . . × Vn → R.

By the term “direct revelation” we mean that the mechanism takes as input the

true valuations of the players (and not some lying strategy). However we still need

a way to devise rules for the game in such a way that individuals will express their

true tastes even when they act rationally. The goal of the mechanism designer is

to choose a single outcome a(v) that amalgamates the preferences vi of the players.

This means that a(v) is such that even a player who would strictly prefer some

other outcome instead of a(v), cannot impose an outcome more favorable for him

by changing his declaration and choosing a different strategy.

Angelina Vidali 4
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We next define the notion of truthfulness also known as incentive compatibility,

or strategyproofness. By lying a player can change the allocation given to him and

thus change his payment and utility. A mechanism is truthful if the players cannot

gain anything by lying. So if a player with valuation vi reports to the mechanism

that his valuation is v′
i his utility does not increase.

Let v = (v1, . . . , vn) be an n-dimensional vector we denote (as is standard in

game theory) by v−i := (v1, . . . , vi−1, vi+1, . . . , vn) the (n − 1)-dimensional vector

that we get from v when we remove the i-th coordinate. According to this notation

we usually write (vi, v−i) instead of v to indicate the game theoretic situation player

i faces.

Definition 2 (truthfulness). A mechanism (a, p1, . . . , pn) is called truthful if for

every player i and every possible n-tuple of valuations v = (v1, . . . , vn) and every

v′
i ∈ Vi we have

vi(a(vi, v−i)) − pi(vi, v−i) ≥ vi(a(v′
i, v−i)) − pi(v

′
i, v−i).

In Section 1.8 we will see that concentrating on truthful mechanisms is equivalent

to concentrating on mechanism that have dominant equilibria.

1.2 Different Domains of valuations

The unrestricted domain of valuations is the case when Vi = R
A, that is, the val-

uations can be any real functions. The unrestricted domain of valuations is not a

very natural domain because usually the valuations for two different outcomes might

depend on each other and in this sense the players are more predictable. Imposing

restrictions on the domain of valuations usually makes things more realistic, but

also leaves room for the mechanism designer, in the sense that the set of possible

truthful mechanisms is potentially richer.

Some of the most common restrictions we impose on valuations, most usually

when studying different kinds of auctions, are the following: Suppose that the mech-

anism chooses an allocation A = (A1, . . . , An) where Ai is the set of items allocated

to player i and Ai ∩ Aj = ∅ for i 6= j we often assume the following conditions:

No externalities. The valuation vi of player i should only depend on i’s allocated

bundle Ai, i.e. vi(A) = vi(Ai).

Angelina Vidali 5
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Free Disposal. The valuation should be non-decreasing with the set of allocated

items, i.e. for every Ai ⊆ Bi we have that vi(Ai) ≤ vi(Bi).

Normalization. When a player gets nothing his valuation is zero, i.e. vi(∅) = 0.

The combinatorial auction domain [34]. The domain we get if we demand that

vi satisfies the preceding three conditions: no externalities, free disposal and nor-

malization.

Special subdomains result when we impose additional restrictions:

Sub-additive valuations. A valuation vi is subadditive if for any two sets Ai and

A′
i, vi(Ai) + vi(A

′
i) ≤ vi(Ai ∪ A′

i).

Superadditive valuations. For any two disjoint sets Ai and A′
i, vi(Ai) + vi(A

′
i) ≥

vi(Ai ∩ A′
i).

Submodular valuations. An important special case of subadditive functions are

sub- modular functions. A valuation function vi is submodular if for any two sets

Ai and A′
i, vi(Ai) + vi(A

′
i) ≥ vi(Ai ∪ A′

i) + vi(Ai ∩ A′
i).

Remark 1. Here we denote by Ai the set of items allocated to player i, while in the

rest of this work we denote by ai the binary vector where aij is 1 if player i gets

item j and 0 if he doesn’t. It is however very easy to go from one notation to the

other:

aij =







1 if j ∈ Ai

0 else.

1.3 From Valuations to Types

We have modeled the players as individuals who choose a valuation function from

a known set of functions (for example if the set of valuation functions contains all

functions that satisfy additivity, a player can choose to report any function from

this set) the expected preferences of an individual for different outcomes.

However in most real-life situations for which we need Mechanism Design, for

example in voting, in public projects or in auctions it is rather absurd to ask the

individuals involved to report a function that depicts their preferences. You just ask

them to rank the candidates, or to give a score for each one of the candidates, to say

how much they are determined to pay for the construction of a public project (like

a road or a bridge), or how much they are determined to pay for getting a bundle of

goods. So the input the mechanism asks from player i is a vector of real values ti.

Angelina Vidali 6
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In fact knowing this input ti one can then deduce the valuation function of player

i. The vector ti is called the type of player i. We denote by Ti the set of all possible

types for player i. We call D := T1 × . . . × Tn the domain of the mechanism design

problem.

If a player tells the truth he reports his type vector ti, otherwise he follows a

lying strategy. By lying a player can change his allocation and payment. However

the utility of the player does not only depend on the false type he declares but also

on his true type, which gives his valuation. (We assume here that the mechanism

designer cannot verify this after all jobs are finished and change the payments. For

mechanisms with verification see the second part of [42].)

Example 1 (Single-item auction). For example in a single-item auction each player

reports a bid ti for the item in sale. The valuation fuction corresponding to type ti

is vi(ai) = aiti, where ai ∈ {0, 1} is the allocation of player i, that is the valuation

of player i is ti if he gets the item and 0 otherwise.

Example 2 (The Scheduling Problem). In the scheduling problem there are m tasks

and we wish to allocate them to n players/machines. The possible outcomes are

the n × m matrices a such that aij ∈ {0, 1} and
∑n

j=1 aij = 1, in other words

each task has to be allocated to exactly one player. Each player reports a vector

ti = (ti1, . . . , tin), his processing times for each one of the m tasks, that is tij is

equal to the valuation vi(ej) of player i for getting only task j. (We use the common

notation for the j-th unitary vector ej = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is at

position j.) We assume that the processing time/valuation of a machine that gets

two tasks is the sum of the processing times for each one of the tasks separately. This

is equivalent to saying that the valuation of the machine is additive. Consequently

in the scheduling problem the valuation vi of player i for the outcome a is given by

vi(a) =
∑m

j=1 aijvi(ej) =
∑m

j=1 aijtij.

Example 3 (The Fractional version of the Scheduling Problem). This is exactly like

the scheduling problem, except that we allow a task to be split between two or more

players. Consequently the possible outcomes are the n × m matrices a such that

aij ∈ R
+ and

∑n

j=1 aij = 1. Even though the possible outcomes are infinitely many

we can deduce which is the valuation function of a player using again the vector

ti = (ti1, . . . , tin) of processing times for each one of the m tasks.

Example 4 (Combinatorial Auctions). In the combinatorial auctions problem there

Angelina Vidali 7
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are m items and we wish to allocate them to n players/bidders. The possible out-

comes are the same as in the scheduling problem. Each player reports a vector ti,

his valuation for each one of his possible allocations ai. However here the valuations

do not need to be additive.

As you might have already noticed from the previous examples when using types

we say that each player has a single valuation vi(ai, ti) where vi : A × Ti → R,

while in Subsection 1.1 we defined valuations as functions vi : A → R that just

take as input an allocation. The connection between these two definitions is that

if we fix a type ti then vi(ai, ti) is a function from A → R. If we fix two different

types ti, t
′
i then defining fi(ai) := vi(ai, ti), f

′
i(ai) := vi(ai, t

′
i) we get two different

valuation functions fi, f
′
i according to the notation in Subsection 1.1. According to

this notation a player instead of reporting a type, i.e. his preferences for a finite

number of outcomes, reports a function from a set of functions known from before

to the mechanism designer. When getting types as input the mechanism designer,

knowing again which is the set of possible valuation functions, uses these types in

order to deduce the valuation functions.

1.4 The Vickrey auction

The most typical example of mechanism design is an auction for selling a single

item. It describes a real-life problem, is very simple and embodies some of the basic

ideas and limitations of mechanism design.

The setting is the following: We have a single item to sell and there are many

bidders. The mechanism designer announces the mechanism and then the bidders

submit their bids for the item in sealed envelopes. The mechanism computes which

one of the bidders gets the item (allocation) and at what price (payment). The goal

of the mechanism designer is to give the item to the bidder who values it highest

(i.e. to maximize the social welfare).

Perhaps the most straightforward solution would be to give the item to the

player with the maximum bid and charge him his bid. This allocation is however

not truthful: Suppose that there are three players with types (t1, t2, t3) = (1, 2, 7).

This mechanism would give the item to the one who bids 7 and charge him 7.

However this player would increase his utility by lying and giving a lower bid. He

could bid slightly higher than the second best bid, here 2 + ǫ for some small ǫ > 0:

Angelina Vidali 8
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He would still get the item and increase his utility from 0 (v3 − p3 = 7− 7) to 5− ǫ

(v3 − p′3 = 7 − 2 − ǫ).

How could we change this mechanism to a truthful one? Suppose we keep the

allocation part as it is. Can we change the payment and give the winner incentive

to report his true valuation? The answer is yes and the resulting auction is the

celebrated Vickrey auction. The winner pays the second-best bid, so that the player

with the highest bid (here t3 = 7) would have no reason to lie about his valuation,

no matter if the other players tell the truth or not.

1.5 Properties of truthful mechanisms

Lemma 1 ([34]). The price pi(t) of a truthful mechanism does not depend on the

declaration ti of player i, but only on his allocation ai(t) and the declarations of the

other players, that is pi(t) = pi(ai(t), t−i).

Proof. Suppose towards a contradiction that there exist ti, t
′
i such that ai(ti, t−i) =

ai(t
′
i, t−i), but pi(ti, t−i) < pi(t

′
i, t−i). Then when the true processing times of player i

are ti he has incentive to declare falsely that his processing times are t′i. His valuation

remains the same (as we assumed that ai(ti, t−i) = ai(t
′
i, t−i)) and his payment

decreases. Consequently by declaring falsely t′i his utility increases vi(ai(ti, t−i), ti)−
pi(ti, t−i) > vi(ai(t

′
i, t−i), ti) − pi(t

′
i, t−i). This contradicts the assumption that the

mechanism is truthful.

Theorem 1. For every player i and type t the outcome ai of every truthful mecha-

nism satisfies ai(ti, t−i) ∈ argmaxa{vi(ai) − pi(ai, t−i)}.

Proof. Suppose towards a contradiction that there exists a type t such that for some

allocation a′
i we have vi(ai(ti, t−i), ti) − pi(ai(ti, t−i), t−i) < vi(a

′
i, ti) − pi(a

′
i, t−i). If

t′i is such that ai(t
′
i, t−i) = a′

i then player i would have incentive to falsely declare

t′i.

1.6 The VCG mechanism

Definition 3. The VCG mechanism is the one that implements the social choice

function of selecting the outcome for which the sum of the valuations of all players

Angelina Vidali 9
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is maximum:

a(v) ∈ argmax
a∈A

n
∑

i=1

vi(a).

The corresponding payment is

pi(v1, . . . , vn) = −
∑

j 6=i

vj(a(v)) + hi(v−i)

so that each player pays an amount equal to the sum of the values of the other

players. In this way the utility of each player becomes: ui(ai) = vi(ai)− p(ai, v−i) =
∑n

i=1 vi(a). That is the utilities of all players are equal to the social welfare.

Even though hi(v−i) is not of great significance if we impose some restriction on

the payments then it takes a very particular form. For example in an auction it

would be natural to demand the following restrictions on payments:

Definition 4. A mechanism satisfies voluntary participation if the utility of the

players is always non-negative.

Definition 5. A mechanism has no positive transfers if no player is ever paid money.

Definition 6. The choice hi(v−i) = maxb∈A vi(b) is called the Clark pivot rule. This

makes the payment of player i: pi(v) = maxb

∑

j 6=i vi(b) −
∑

j 6=i vi(a(v)).

The idea is that player i pays the total damage that he causes to the other players,

i.e. the difference between the total welfare of the other players when he participates

and when he doesn’t participate. Of course there are many problems in mechanism

design where players get payed in order to participate. A slight modification of the

Clarke pivot rule also makes sense in most of these cases.

Lemma 2. A VCG mechanism with Clarke Pivot payments makes no positive trans-

fers. If vi(a) ≥ 0 for every vi ∈ Vi and a ∈ A then it also satisfies voluntary

participation.

Proof. Let a be the alternative maximizing
∑

j vj(a) and b the alternative maximiz-

ing
∑

j 6=i vj(b). The rule satisfies voluntary participation since

ui(a) = vi(a) +
∑

j 6=i vj(a) − ∑

j 6=i vj(b)

≥ ∑

j vj(a) − ∑

j vj(b) (as vi(b) ≥ 0)

≥ 0 (as a maximizes
∑

j

vj(a)).

Angelina Vidali 10
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The Clarke pivot rule also satisfies no negative transfers since pi(v) =
∑

j 6=i vi(b) −
∑

j 6=i vi(a(v)) ≥ 0 and b maximizes this sum.

Definition 7 (Affine Maximizers or Generalized VCG). A generalization of this

mechanism is the affine maximizer which weights with positive multipliers λi the

values of each player and adds a constant γa to the value of each outcome a:

a(v) = argmax
a∈A

n
∑

i=1

λivi(a) + γa.

These mechanisms are truthful for every domain. The payments (for the general

domain) align the objective of each player l with the social choice function. This

can be achieved when the payments are

pl(v) = − 1

λl

(

∑

i6=l

λivi(a) + γa

)

.

1.7 Implementation in Dominant Strategies

The mechanisms (direct revelation mechanisms) we have considered so far take as

input the true values of the players. They achieve to elicit these secret values from

the players by guaranteeing that no other strategy would be strictly more profitable

than truth-telling. Perhaps there might be a different protocol, that takes as input

lying strategies instead of true values and achieves a more desirable outcome? We

will see now that if these lying strategies are dominant strategies, then there always

exists a truthful mechanism with exactly the same outcome and payments. In other

words, if we are interested in dominant equilibria, we can concentrate on truthful

mechanisms without loss of generality.

We denote the lying strategies of player i as functions si : Ti → Ti. A player

with true type ti can report any strategy si(ti) as his true type is known only to

himself.

In dominant equilibria each player i with type ti has a dominant strategy si(ti),

that is, if all other players remain fixed to their declarations s−i(t−i) and player i

changes his declaration to s′i(ti) he cannot (strictly) increase his utility. Notice that

a player prefers his dominant strategy even if the other players do not tell the truth.
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Definition 8. A strategy si(vi) ∈ R
m is called a dominant strategy for player i, if

for every other strategy s′i(vi) ∈ R
m we have:

ui(ti, si(ti), s−i(t−i)) ≥ ui(ti, s
′
i(ti), s−i(t−i)).

But why are we interested in dominant strategies and not some other equilibrium

concept? In any social choice problem the ideal would be to impose a solution that

is optimal for each one of the players. As this is in most cases impossible we try to

choose a solution that is an equilibrium so that even the players who are not totaly

satisfied cannot impose a solution they would prefer. In game theory there are many

equilibrium concepts. An equilibrium concept assumes the way players would react

to a strategic situation. If the strategies chosen by the players are such that none

of the possible, according to the specific equilibrium concept, reactions can improve

any player’s situation, then this set of strategies is an equilibrium point of the game.

Dominant strategies is a simple and natural equilibrium concept however it is not

used very often in Game Theory, because the existence of dominant strategies is a

stringent condition. For many naturally-occurring games dominant strategies do not

exist. Dominant strategies are not very interesting from the game-theoretic point

of view because players are more predictable. However in mechanism design the

goal is to start from an unpredictable game theoretic situation and and create a

game where the players’ actions will be predictable, and for this reason dominant

strategies are the most preferred equilibrium concept.

1.8 The Revelation Principle

Theorem 2 (The Revelation Principle). For every mechanism in dominant strate-

gies there exists a truthful mechanism, such that for every possible input the two

mechanisms produce the same allocation and payments.

Proof. The idea of proof is that given a mechanism in dominant strategies we con-

struct a truthful one as follows: the truthful mechanism takes as input the true

values of the players and simulates their lying strategies. So if s1(t1), . . . , sn(tn) are

the dominant strategies of the mechanism (a, p1, . . . , pn) we construct a new social

choice function f(t1, . . . , tn) := a(s1(t1), . . . , sn(tn)) (that is f := a◦ s) and similarly

p′i(t1, . . . , tn) = pi(s1(t1), . . . , sn(tn)).
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1.9 Outline of the Thesis

In the first chapter we gave an introduction to Mechanism design. From the second

chapter and until the end of the Thesis we deal specifically with the scheduling

selfish unrelated machines problem as all results in this thesis concern this specific

problem. In the second chapter we state the problem and start presenting some

relevant fundamental facts and results. We consider a number of different approaches

to it. On the way we also present some of the tools we have developed for studying

the problem [19, 31]. Then we present all known algorithms for the problem and

show some easy lower bounds namely a 2-lower bound for the case of two machines

and an n lower bound for some special classes of algorithms. Two of these classes

are the class of additive and the class of threshold mechanisms. We show that the

class of threshold mechanisms is identical to the class of additive mechanisms (we

announced the result in [18] and here we provide the complete proof).

In the third chapter we explore the possible truthful mechanisms for the schedul-

ing problem. We develop some tools for the general case of m tasks but we only

manage to characterize the possible mechanisms for the case of three tasks. We

believe that this work provides a better intuition about truthful mechanisms. As

the existing lower bound for the case of 3 players uses the result for the two-task

case, this work is potentially useful not only for characterizing truthful mechanisms

for more than two players, but also for obtaining new lower bounds. This chapter

is based on an unpublished working paper.

In the fourth chapter we give a proof a lower bound 1 +
√

2 ≈ 2.41 on the ap-

proximation ratio of truthful mechanisms for the case of three or more machines.

This chapter is based primarily on the paper “A lower bound for scheduling mech-

anisms” [19] co-authored with George Christodoulou and Elias Koutsoupias. (The

same result can also be found in [15, 17] however the proof presented here is different

and shorter.)

In the fifth chapter we give a proof of a 1+φ ≈ 2.618 lower bound as the number

of machines n tends to ∞. Our technique also gives improved lower bounds for

any constant number of machines n ≥ 4. This chapter is based primarily on the

paper “A lower bound of 1 + φ for truthful scheduling” [31] co-authored with Elias

Koutsoupias.

The objective in the scheduling problem is to minimize the makespan, i.e. to
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minimize the maximum completion time, or in other words to minimize the L∞

norm of the machine loads. On the other hand the goal achieved by the VCG,

which is the best known algorithm, is that of minimizing the sum of completion

times, in other words to minimize the L1 norm of the machine loads. It turns out

that our techniques can be easily adapted in order to get lower bounds for all Lp

norms 2 ≤ p < ∞.

Finally in the last chapter we provide a characterization for the case of two-

players and arbitrarily many tasks. We show that the class of truthful mechanisms

is very limited: A decisive truthful mechanism partitions the tasks into groups so

that the tasks in each group are allocated independently of the other groups. Tasks

in a group of size at least two are allocated by an affine minimizer and tasks in

singleton groups by a threshold mechanism (which is however a task-independent

mechanism except for countably many points). This characterization is about all

truthful mechanisms, including those with unbounded approximation ratio. A di-

rect consequence of this approach is that the approximation ratio of mechanisms for

two players, for the objective of minimizing the makepan, is 2, even for two tasks.

In fact, it follows that for two players, VCG is the unique algorithm with optimal

approximation 2. This characterization provides some support that any decisive

truthful mechanism (for 3 or more players) partitions the tasks into groups some of

which are allocated by affine minimizers, while the rest are allocated by a threshold

mechanism (in which a task is allocated to a player when it is below a threshold value

which depends only on the values of the other players). This chapter is based pri-

marily on the paper “A characterization of 2-player mechanisms for scheduling” [18]

co-authored with with George Christodoulou and Elias Koutsoupias.
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Chapter 2

An introduction to the Scheduling

Problem

“No resource allocation mechanism can ensure a fully efficient level of

public goods, because it is in the selfish interest of each person to give

false signals, to pretend to have less interest in a given collective activity

than he really has.”

Paul Samuelson

2.1 Statement of the problem

The scheduling problem on unrelated machines is one of the most fundamental

scheduling problems [27, 28].

Nisan and Ronen introduced the mechanism-design version of the problem in

their paper that founded the algorithmic theory of Mechanism Design [42, 43]. They

gave a truthful n-approximate (polynomial-time) algorithm and conjectured that

there is no deterministic mechanism with approximation ratio less than n. They

also showed that no mechanism (polynomial-time or not) can achieve approximation

ratio better than 2.

In the scheduling problem you can imagine a very big company (the mechanism

designer) that needs very badly to process a set of m tasks as soon as possible (all

tasks have to be allocated)–no matter what the cost will be– using n machines.

15
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The company pays the machines for the tasks they process. Each task has to be

processed by exactly one machine, but different tasks can be processed in parallel

on different machines.

Definition 9 (The scheduling unrelated machines problem). The input to the

scheduling problem is a nonnegative matrix t of n rows, one for each machine-player,

and m columns, one for each task. The entry tij (of the i-th row and j-th column) is

the time it takes for machine i to execute task j. Let ti denote the times for machine

i, which is the vector of the i-th row. The output is an allocation a = a(t), which

partitions the tasks into the n machines. We describe the partition using indicator

values aij ∈ {0, 1}: aij = 1 iff task j is allocated to machine i. We should allocate

each task to exactly one machine, or more formally
∑m

j=1 aij = 1. The goal is to

minimize the makespan, i.e. to minimize the total processing time of the player that

finishes last.

Definition 10. We will say that an algorithm ALG achieves an r-approximation if

for any possible input t we have
cost(ALG(t))

OPT (t)
≤ r, where OPT (t) is the cost of the

optimal allocation for input t.

In the mechanism-design version of the problem we consider direct-revelation

mechanisms. That is, we consider mechanisms that work according to the following

protocol:

• Each player i declares the values in row ti, which is known only to player i.

• The mechanism, based on the declared values, decides how to allocate the

tasks to the players.

• The mechanism, based on the declared values, and the allocation of the pre-

vious step, decides how much to pay each player.

The mechanism consists of two algorithms, an allocation algorithm and a pay-

ment algorithm. The cost of a player (machine) is the sum of the times of the tasks

allocated to it minus the payment. One way to think of it is as if the players are lazy

and don’t want to execute tasks, and the mechanism pays them enough to induce

them to execute the tasks. On the other hand, the players know both the allocation

and the payment algorithm and may have an incentive to lie in the first step. We are
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interested in mechanisms in which there exists a dominant strategy for each one of

the players. Thanks to the Revelation Principle (see Section 1.7) every mechanism

in dominant strategies can be turned into an equivalent truthful mechanism. This

allows us to concentrate only on truthful mechanisms.

At a first reading the mechanism design version of the problem might seem a

bit unnatural because of the payments given to the machines in order to make

them tell their true types. Payments in auctions seem perhaps better justified

and natural compared to the payments in scheduling, but in fact in the auction

settings studied in traditional mechanism design, payments are not given in order to

maximize the revenue of the auctioneer, as one would perhaps first guess. The goal

of the auctioneer is not to gain as much as possible but to maximize the utility of

the players. Payments are in fact nothing else than a way to force the players to tell

the truth. The purpose of the payments in scheduling is along the lines of purpose

of the payments in auctions. The mechanism designer pays the players so that they

tell their true processing times. So in the scheduling problem the players get paid

in order to do a set of jobs (without payments the machines would lie and say they

cannot perform any job). In fact, the scheduling problem is in many aspects like

the multi-unit combinatorial auction problem.

2.2 An n-approximate truthful mechanism

For someone who is familiar with the VCG mechanism for multi-unit auctions it is

easy to observe that the VCG mechanism we devised for auctions can be applied to

scheduling giving an n-approximation of the goal of minimizing the makespan.

Definition 11. The MinWork mechanism [42]

• Allocation: Consider each task separately and allocate it to the the player

with the minimum processing time.

• Payment: The payment a player receives for each task allocated to him is

equal to the processing time of the second best player for this task.

The MinWork Mechanism coincides with the VCG mechanism, because it achieves

the goal of selecting the outcome that minimizes the sum of processing times of all

players:
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Definition 12 (The VCG mechanism[47, 20, 25]). The VCG mechanism for the

scheduling problem chooses an allocation a such that a ∈ argmina{
∑n

i=1 ai · ti}.

But how well does a mechanism that minimizes the sum of processing times

perform for the objective of minimizing the makespan?

Example 5. A worst-case example for the VCG mechanism is the following n × n

matrix where the allocation produced by the VCG mechanism is indicated by the

stars and ǫ is some very small positive value:












1 − ǫ ⋆ 1 − ǫ ⋆ . . . 1 − ǫ ⋆

1 1 . . . 1
...

...
. . .

...

1 1 . . . 1













.

The optimal allocation would be a diagonal allocation with cost 1 allocating one

task to each player and the resulting approximation ratio is n.

Theorem 3 ([42]). The MinWork mechanism achieves an n-approximation.

Proof. The cost of the optimal allocation OPT satisfies OPT ≥ 1
n

∑k

j=1 mini tij.

And as the makespan of MinWork is no more than
∑k

j=1 mini tij (in the case when

one of the players is the fastest for all tasks, like in the previous example) we get

that the approximation ratio of MinWork is n.

Remark 2. The same idea gives a lower bound of at least n for all affine minimizers,

namely if the affine minimizer has weights λ1, . . . , λn we take the input matrix




















b

λ1

− ǫ ⋆
b

λ1

− ǫ ⋆ . . .
b

λ1

− ǫ ⋆

b

λ2

b

λ2

. . .
b

λ2
...

...
. . .

...
b

λn

b

λn

. . .
b

λn





















for some sufficiently large b >> maxa∈A γa.

In fact:

Theorem 4. An affine minimizer that has at least two different allocations a, a′ with

γa 6= γa′ has unbounded approximation ratio.
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Proof. To see this, fix an affine minimizer for which there exist γa < γa′ and consider

the following instance:

tij =







b if aij = 1

ǫ if aij = 0,

where b <
γa′ − γa

n
. The affine minimizer achieves approximation ratio at of least b,

(as
∑n

i=1 aiti + γa ≤ n · b + γa < ǫ + γa′ =
∑n

i=1 a′
iti + γa′) while the optimum would

have been exactly ǫ.

2.3 Monotonicity: A local characterization of Truth-

fulness

We discuss below the Monotonicity Property, a simple necessary and sufficient con-

dition for truthfulness. This is true for every finite convex domain, but we restrict

the discussion to the scheduling domain.

Definition 13 (Monotonicity Property). An allocation algorithm is called monotone

if it satisfies the following property: for every two sets of tasks t and t′ which differ

only on machine i (i.e., on the i-the row) the associated allocations a and a′ satisfy

(ai − a′
i) · (ti − t′i) ≤ 0,

where · denotes the dot product of the vectors, that is,
∑m

j=1(aij −a′
ij)(tij − t′ij) ≤ 0.

The Monotonicity Property states that when for fixed values of the other players

we increase the times of the tasks for player i, his allocation can only become smaller,

i.e. the allocation function of player i is decreasing with respect to the processing

times of player i. Notice that the Monotonicity Property involves only the allocation

of one player (the i-th player).

Theorem 5 (Saks and Yu). A mechanism is truthful if and only if its allocations

satisfy the Monotonicity Property.

The short proof that follows shows that the Monotonicity Property is necessary

condition for truthful mechanisms. Saks and Yu [46] gave a proof for the other

(considerably more difficult) direction, that it is also a sufficient condition. In fact,
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they showed a much more general result: the property is sufficient for every finite

convex domain; this includes the unrestricted domain and the combinatorial auction

domains.

Proof. (if direction) First remember that from Lemma 1 the payments cannot de-

pend directly on the declaration ti of player i, but only indirectly through his alloca-

tion ai(t) and the declarations t−i of the other players, that is, pi(t) = pi(ai(t), t−i).

When player i has valuations ti, he has no incentive to declare t′i when

ti · ai − pi(ai, t−i) ≤ ti · a′
i − pi(a

′
i, t−i)

Similarly, when we inverse the roles of t and t′, we have

t′i · a′
i − pi(a

′
i, t−i) ≤ t′i · ai − pi(ai, t−i)

Now if we add the above inequalities, we get the Monotonicity Property.

The implications are that we don’t have to consider at all the payment algo-

rithm. If an allocation function satisfies the Monotonicity Property then we are

sure that there exist payments that together with the allocation function make a

truthful mechanism. To prove lower bounds or to design good mechanisms, we can

completely forget about mechanisms, payments, truthfulness etc, and simply focus

on the subclass of monotone allocation algorithms. The difference from traditional

algorithm design is that we have to consider the whole space of inputs together.

This is because the property should be satisfied by any two pairs of input with the

corresponding output.

Definition 14. We will denote by Ri
a the closure of the subset of R

m where the

mechanism gives assignment a to machine i for some fixed t−i and we will call it a

region of the mechanism.

For the scheduling domain the monotonicity property has a straightforward ge-

ometric interpretation. Fix the values of all players except for player i. For warmup

suppose first that there is only one task and consider how the allocation of player i

changes as his processing times become bigger. For small values of ti player i gets

the task, then there is a threshold and his allocation changes once and for all from

one to zero. This threshold might depend on the values of the other players t−i, but
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it does not depend on the values of player i. The reason is that all inputs ti with

allocation 1 and inputs t′i has allocation 0 according to the Monotonicity Property

should satisfy ti ≤ t′i.

Definition 15. Let f i
a:a′(t−i) := sup{(a′ − a) · t′i | t′i ∈ Ri

a′}.

Note that for fixed t−i, fa′:a(t−i) is constant.

Lemma 3. Regions Ra and Ra′ are separated by the hyperplane (a′
i − ai) · ti =

f i
a:a′(t−i) and each region is bounded by a convex polytope.

Proof. By the Monotonicity Property, for every ti ∈ Ra and t′i ∈ Ra′ we must have

(a − a′) · (ti − t′i) ≤ 0. Equivalently we can write (a′ − a) · ti ≥ (a′ − a) · t′i. Since

f i
a:a′(t−i) = sup{(a′ − a) · t′i | t′i ∈ Ri

a′} we have (a′ − a) · ti ≥ f i
a:a′ ≥ (a′ − a) · t′i and

the lemma follows.

Now let us consider the case of two tasks, again for fixed values of the other

players t−i. We consider every possible (ti1, ti2), that is we consider the space of

all possible valuations for a player i. That is the two axes are ti1 and ti2 and the

mechanism partitions the plane into a different region, for each one of the four

possible allocations of player i. In particular, let Rai1ai2
denote the set of inputs of

player i for which the mechanism has allocation (ai1, ai2) for the i-th player.

If ti, t
′
i are two inputs and ai, a

′
i their corresponding allocations the Monotonicity

Property gives that (ai − a′
i) · ti ≤ (ai − a′

i) · t′i as we saw in Lemma 3 this is

equivalent to saying that the boundary between Rai1ai2
and Ra′

i1a′
i2

is of the form

(a′
i1 − ai1)ti1 + (a′

i2 − ai2)ti2 = fa′:a(t−i) where fa:a′(t−i) is a constant for fixed t−i.

For example the boundary between regions R11 and R00 is of the form ti1 + ti2 =

f00:11(t−i). Since the allocation variables ai1 and ai2 are either 0 or 1, the boundaries

have very specific slopes. Therefore the allocation of the mechanism should have

one the 2 forms of Figure 4.1.

To get the whole picture every mechanisms creates a partition of R
n×m to nm

regions, one for each possible allocation of the tasks to the players. Monotonicity is

a necessary and sufficient condition for Truthfulness, and the geometrical interpre-

tation of monotonicity is that any m-dimensional cut of the mechanism, for constant

t−i, has boundaries of the specific form given by the monotonicity property.
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t11

t12

R10 R00

R11 R01

t11

t12

R10 R00

R11 R01

t11

t12

R10 R00

R11 R01

Figure 2.1: The two possible ways to partition the positive orthant and the threshold

mechanism as a degenerate case of both.

Notice that the Monotonicity Property does not specify what happens exactly

at the boundaries between regions.

In fact, in order to obtain lower bounds [17, 31] we use repeatedly a restricted

but easy to use variant of the monotonicity property, which gives a way to change

the values of one player in order to keep his allocation fixed. There is a very simple

and nice geometrical interpretation of the following lemma: If we know which is the

assignment of player i for some input values t then we know the assignment of a

whole box (see Figure 2.2 for a 2-dimensional example) on the plane for constant

t−i. Which is this box depends on the assignment a of the point.

Lemma 4 ([17]). Let t be a matrix of processing times and let a = a(t) be the

allocation produced by a truthful mechanism.

a. Suppose that we change only the processing times of machine i and in such a

way that t′ij > tij when aij = 0, and t′ij < tij when aij = 1. The mechanism

does not change the allocation to machine i, i.e., ai(t
′) = ai(t). (However, it

may change the allocation of other machines).

b. Fix now a mechanism with approximation ratio r and consider an instance

whose optimal allocation has cost c. Suppose that for a task j we have tij = 0

for machine i, and ti′j = ∞ for every other machine i′, where ∞ denotes a

very large real number, greater than r · (c + u), for some constant u. If we

change the values of machine i for all other tasks as in the first part of the

lemma but raise the time for task j to t′ij = u, the mechanism again does not

change the allocation vector of machine i.
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t11

t12

R10 R00

R11 R01

t11

t12

R10 R00

R11 R01

t11

t12

R10 R00

R11 R01

Figure 2.2: A geometrical interpretation of Lemma 4: If we know that the assignment

of the black dot is 01 then we can deduce that the allocation in the interior of the gray

region is also the same, no matter what is the particular shape of the mechanism (we

increase the value of the task with assignment 0 and decrease the value of the task

with assignment 1). If the black point is not on a boundary then we can additionally

say that the assignment in the closure of the box is also the same. This remark will

play a very significant role in our proof of the 2-player characterization.

Proof. a. By the Monotonicity Property, we have

m
∑

j=1

(tij − t′ij)(aij(t) − aij(t
′)) ≤ 0.

For the first property, observe that all terms of the sum are nonnegative (by

the premises of the lemma). The only way to satisfy the inequality is to have

all terms equal to 0, that is, aij(t) = aij(t
′).

b. When we change the value tij to u, the optimum makespan becomes at most

c + u. If the mechanism allocates task j to a machine different than i, the

approximation ratio is greater than r, which contradicts the hypothesis about

the mechanism. Therefore aij(t) = aij(t
′) = 1, which makes the term corre-

sponding to task j in the sum
∑m

j=1(tij − t′ij)(aij(t) − aij(t
′)) ≤ 0 vanish. For

the rest of the terms we repeat the argument of the first part.

To be more formal the geometrical equivalent of the preceding lemma can be

stated as follows:
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Definition 16. The Minkowski sum of two sets A,B ⊆ R
n is A⊕B = {a + b | a ∈

A, b ∈ B}.

Definition 17. Let Bi
a := {ti | (−1)aj tij ≥ 0, j = 1, . . . ,m}.

For m = 2 each Bi
a is a quadrant of R

2.

Lemma 5. Take two different assignments a, a′. If a point b belongs to region Ri
a

of a truthful mechanism, then also b ⊕ Ba ⊆ Ra.

A useful observation that was first used in [17] is the following:

Remark 3. Suppose a mechanism for m tasks is truthful for player i. If we keep the

processing times of player i for a set of k tasks constant then the mechanism for the

rest of the tasks is a truthful mechanism for k − m tasks.

The reason is that if we fix the values of some tasks, some of the terms in the

Monotonicity Property sum become zero and Monotonicity holds for the rest of the

tasks so that we still get a truthful mechanism for the rest of the tasks.

In the context of combinatorial auctions, [34] proposed a stronger condition very

similar to the Monotonicity Property. This condition however is not satisfied by all

truthful mechanisms.

Definition 18 (Strict Monotonicity (S-Mon)). An allocation algorithm is called

strictly monotone if it satisfies the following property: for every two sets of tasks t

and t′ which differ only on machine i (i.e., on the i-the row) such that the associated

allocations a and a′ satisfy a 6= a′ we have

(ai − a′
i) · (ti − t′i) < 0,

where · denotes the dot product of the vectors, that is,
∑m

j=1(aij −a′
ij)(tij − t′ij) < 0.

For the scheduling domain there exist truthful mechanisms, even with O(n)

approximation ratio (n is the upper bound on the approximation ratio) that do

not satisfy this condition (see Example 6 for a non S-Mon mechanism). There is a

strong connection between this property and Arrow’s “Independence of Irrelevant

Alternatives” condition [29] in the context of voting systems. To be more specific

the Monotonicity Property together with IIA imply Strong Monotonicity.
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Definition 19 (Independence of Irrelevant Alternatives (IIA)). A social choice func-

tion satisfies IIA if for any two types t, t′ such that the associated allocations a and

a′ satisfy a 6= a′ then there exists a player i with

(ai − a′
i) · (ti − t′i) 6= 0.

For example, if the processing times ti of a single machine change to t′i, then

either the allocation ai changes to some allocation a′
i with a′

i 6= ai or the whole

allocation remains the same, i.e. a′ = a.

Arrow himself writes that “the austerity imposed by this condition is perhaps

stricter than necessary”. However one might hope that imposing this additional

condition would perhaps at least give us some insight for how to deal with the

general case. As we will see in Section 2.6 it is very easy to prove an n-lower bound

for the class of S-Mon mechanisms. Still a characterization of all S-Mon scheduling

mechanisms for more than two players is not known yet and would be an interesting

result.

2.4 Known mechanisms for the Scheduling Prob-

lem

There are two ways to search for truthful mechanisms: the first is to concentrate on

the social choice function: For which social choice functions are there payment func-

tions so that the resulting mechanism is truthful? The other one is to concentrate

on the payment functions: Assuming payments that satisfy a certain condition, how

well can the social goal be approximated?

Starting from the allocation part

In light of the fact that the Monotonicity Property is a necessary and sufficient

condition for truthfulness (see Theorem 5), which does not refer to payments at all,

when trying to construct a mechanism we usually only care about constructing an

allocation function that satisfies Monotonicity. For this reason special mechanism

classes are usually described using their allocation part.

The mechanisms that are known to be truthful can be put in two classes: affine

minimizers and task-independent mechanisms. These two classes demonstrate two
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different ways in which we can generalize the VCG mechanism preserving truthful-

ness.

A first idea to generalize the VCG is the following: The VCG achieves the goal

of maximizing the sum of the valuations of the players. As we have already seen in

Definition 7 if we apply a linear transformation to the valuation of each one of the

players we get the affine minimizer or generalized VCG:

Affine Minimizer (or Generalized VCG). An affine minimizer generalizes the

VCG by weighting with positive multipliers λi the values of each player and adding

a constant γa to the value of each outcome a:

a(t) = argmax
a∈A

n
∑

i=1

λiai · ti + γa.

The payments are

pl(a, t−l) = − 1

λl

(

∑

i6=l

λiaijtij + γj

)

.

If all constants γa are zero then the term weighted VCG is often used. The

constants γa change the picture of the mechanism dramatically: The VCG mecha-

nism has no sloped lines, while the affine minimizer has a sloped line in one of its

projections constant t−i see Figure 4.1 (provided that the γas are not all equal to

each other).

A second way to generalize the VCG is by maintaining one of its basic properties

(better understood if you see the MinWork description), namely that it allocates

each task independently of the rest.

Definition 20 (Task-independent mechanism). Another interesting class of mech-

anisms for the scheduling problem are the task independent mechanisms: Each task

is allocated independently of the remaining tasks.

Note that there exist mechanism that allocate each task independently but are

not truthful because they do not satisfy the monotonicity property.

Task-independent mechanisms are special cases of threshold mechanisms. The

idea behind threshold mechanisms is that for each pair of tasks the picture of the

mechanism (for constant values of the other players and tasks) would be the like in

the 3rd case of Figure 4.1, that is the picture would have no sloped lines. As we will

see just the absence of these sloped lines is enough to prove an n lower bound for

the objective of minimizing the makespan.
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Definition 21 (Threshold mechanism). A threshold mechanism for the scheduling

domain is one for which there are threshold functions hij such that the mechanism

allocates item j to player i if and only if tij ≥ hij(t−i). What distinguishes these

mechanisms from general mechanisms is that the thresholds depend only on the

values of the other players but not on the other values of the player himself. In

threshold mechanisms there is a single threshold for getting or not task j and it is

the same regardless of the rest of the tasks allocated to player i. It is not true in

general that every set of functions hij defines a legal mechanism, as they have to be

consistent between them. In particular, the threshold functions should be such that

every item j is allocated to exactly one player. In other words, exactly one of the

constraints vi({j}) ≥ hij(v−i), for i = 1, . . . , n, should be satisfied.

Example 6 (Threshold but not Task-independent). The following mechanism for 3

players and 2 tasks is a threshold mechanism but not a task-independent mechanism:

Give the first task to the player with the minimum value and process it in time

min{t11, t21, t31}. Give the second task to player 1 if t12 ≤ min{t22, t32}, otherwise if

t22 < t32t11 give the second task to the player 2, else give it to player 3.

Note here that the values of the processing times, but not the allocation, of

player 1 for the first task affect the allocation of the second task.

Starting from the payments

Nissan and Ronen in [42] define a class of mechanisms called “additive mechanisms”

for which they could provide an n lower bound for any approximation algorithm in

terms of conditions satisfied by their payment functions. A natural question that

arises is to describe the allocation rule of these types of mechanisms without any

reference to their payment rule. Theorem 6 gives such a description.

Definition 22 ( [42]). A mechanism is called additive if for each agent i, processing

times matrix t and allocation a = a(t) of tasks the payment of agent i is

pi(ai, t−i) =
∑

j={1,...,m}

aijpi(ej, t−i).

As you can see in an additive mechanism a player is payed for each task he

processes separately, that is his payment for one task does not depend on what

other tasks are assigned to him. For example pi(11, t−i) = pi(10, t−i) + pi(01, t−i)
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This assumption does not allow for a mechanism that gives a bonus payment to a

player who is useful and processes many jobs, neither for a mechanism that demands

a discount from a player that gets a lot of jobs and subsequently a big payment.

2.5 Additive and threshold mechanisms

The definition we gave for threshold mechanisms involves only the allocation and

the definition of additive mechanisms involves only the payments. We show that

the class of additive mechanisms coincides with the class of threshold mechanisms.

Theorem 6. A mechanism is additive iff it is a threshold mechanism.

Proof. Fix a player i and the values t−i of the other players, for simplicity we will

write p(a) instead of pi(ai, t−i). Take two allocations a and a′, that differ only on

task k (i.e. a′
k = 1 − ak), then

p(a′) − p(a) =
[

(1 − ak)p(ek) +
m

∑

j=1

j 6=k

ajp(ej)
]

−
m

∑

j=1

ajp(ej) (the mechanism is additive)

= (1 − 2ak)p(ek) = (−1)akp(ek)

Since the mechanism is truthful, if the value of player i is ti ∈ Ra, it should be

p(a)− ati ≥ p(a′)− a′ti. Taking two allocations a and a′, that differ only on task k,

and rearranging the previous inequality we get tik ≤ (−1)ak+1p(ek) for every ti ∈ Ra

and every k = 1, . . . ,m. Let

Fa := {ti | ti1 ≤ (−1)a1+1pi(e1), . . . , tim ≤ (−1)am+1pi(em)}

These sets satisfy Ra ⊆ Fa and Fa ∩Bb = ∅, for any two allocations a, b with a 6= b.

Finally as the mechanism is a partition of the input space, we get that Ra = Fa. It

is now easy to see that the mechanism is a threshold mechanism: player i gets task

k if and only if tik ≤ pi(ek, t−i).

2.6 Some easy lower bounds

As we will see it is easy to show a lower bound of 2 for two (or more) machines and

three (or more) tasks.
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Theorem 7 ( [42]). There does not exist a mechanism that achieves an r-approximation

of the scheduling problem with three or more tasks for any r < 2.

On what follows we put a ⋆ next to the value of the player who gets each one of

the tasks.

Proof. We start with the instance

(

1 1 1

1 1 1

)

, which basically admits two allocations

(because of its symmetry):

• Either the allocation splits the tasks between the players and by the Mono-

tonicity Property and especially by applying Lemma 4 we get that

(

1 ⋆ 1 ⋆ 1

1 1 1 ⋆

)

→
(

1 ⋆ 1 ⋆ 1

1 1 0 ⋆

)

,

• or one player gets all tasks and again by Lemma 4

(

1 ⋆ 1 ⋆ 1 ⋆

1 1 1

)

→
(

1 ⋆ 1 ⋆ 0 ⋆

1 1 1

)

.

In any case the cost of the resulting allocation is 2, while the cost of the optimal

allocation would have been 1, which gives a lower bound of 2.

Remark 4. In fact when we lower the processing time of a player for a task he

gets, we also make the values of the tasks with assignment 0 a little bigger so that

Lemma 4 holds.

Theorem 8. Every threshold mechanism for at least n2 − n + 1 tasks has approxi-

mation ratio at least n.

As we have seen in Theorem 6 additive and threshold mechanisms coincide so

we also get the following theorem:

Theorem 9 ([42]). Every additive mechanism for at least n2 − n + 1 tasks has

approximation ratio at least n.
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Proof. For a better understanding we will give the proof of a lower bound of 3 for the

case of 3 tasks. Exactly the same technique gives a lower bound of n for n2 − n + 1

tasks and n players as this number of tasks guarantees that one of the players will

get at least n tasks.

We start with the instance






1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1







where we can assume w.l.o.g. that player 1 gets at least 3 tasks. The idea is to

lower all values of player 1 to some small ǫ > 0 except for 3 (and in the general case

n) values. If we set a task that gets allocated to player 1 to ǫ, then by Lemma 4 the

allocation of player 1 remains the same. We then lower one by one all of the tasks

that are not assigned to player 1. Player 1 doesn’t loose any of the tasks initially

assigned to him, because in a threshold mechanism we cannot move from one region

Ra to another region Ra′ that differs from the original region in more than one

position by lowering a single task (This might have not been true if the projections

of the mechanism had some sloped lines). We continue until all tasks of player 1

except for the 3 that were initially assigned to him are zero. The approximation

ratio is 3.

Example 7. For example if the original assignment is the one marked by the stars

then using Lemma 4 we get:






1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 1 ⋆

1 1 1 1 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1






→







1 ⋆ 1 ⋆ 1 ⋆ 0 0 0 0 ⋆

1 1 1 1 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1







Exactly the same technique gives a lower bound of n for n2 − n + 1 tasks and n

players as this number of tasks guarantees that one of the players will get at least

n tasks.

Theorem 10 ([42, 40]). Every Strictly Monotone mechanism for at least n2 −n+1

tasks has approximation ratio at least n.

Proof. The proof just extends the idea of the lower bound of 2 proof (Theorem 7) for

more than two players. The reason that this proof does not work for general mech-

anisms (satisfying Monotonicity but not S-Mon) is that in general if we change the

Angelina Vidali 30



Game-theoretic analysis of networks

allocation of one player the rest of the players might exchange their tasks. (These

players change allocation and satisfy the Monotonicity property with equality, be-

cause they have t = t′.) If we however assume S-Mon we are sure that the rest of

the players will not exchange their tasks.

For example for 3 players we start again with the instance






1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1






.

Assume that the allocation is indicated by the stars (the proof in the other cases is

very similar). One player gets at least three tasks. The idea is to keep the values of

these tasks intact and lower to zero the value of the player who gets each one of the

rest of the tasks. We can do this without affecting the allocation by changing the

values of one player at a time.






1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 1 ⋆

1 1 1 1 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1






→







1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 0 ⋆

1 1 1 1 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1






→

→







1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 0 ⋆

1 1 1 0 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1






→







1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 0 ⋆

1 1 1 0 ⋆ 1 1 1

1 1 1 1 0 ⋆ 0 ⋆ 1






.

As an endnote observe that there is great similarity between these two proofs:

both start with the same instance and exploit its symmetry. The basic difference is

that in threshold mechanism it is enough to consider just one player, while in S-Mon

mechanisms you have to consider and change the values of all players.

Definition 23. A mechanism has super-additive payments for player i if player i

never gets paid less than the sum of the payments he would get for each of the tasks

separately. This is equivalent to saying the region where player i gets all tasks is an

m-dimensional box, i.e. it is of the form Ri
1...1 = {ti|tij ≤ hij for j = 1 . . . m} where

the constants hij may only depend on t−i.

Theorem 11. Every mechanism with super-additive payments has approximation

ratio at least 1 +
√

n.
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Proof. We will just show that it has ratio at least
√

n. By adding some additional

dummy tasks (like we do in the proof of the 1 +
√

2 lower bound) it is an easy

exercise to improve this to a lower bound of 1 +
√

n.

For 0 < b < 1 consider the n × n matrix of processing times













b . . . b

1 . . . 1
...

. . .
...

1 . . . 1













.

If the first player gets all tasks then the approximation ratio is n · b. Consequently

in order to achieve a ratio smaller than n · b we must have h11 = f01...1:1...1 ≤ b.

Similarly we have h1j = f1...101...1:1...1 ≤ b. Now if player 1 gets all tasks except for

task j we raise the value of task j to b+ ǫ and lower all other values of player 1 to ǫ:













ǫ ⋆ . . . b + ǫ . . . ǫ ⋆

1 . . . 1 ⋆ . . . 1
... . . . 1

. . .
...

1 . . . 1 . . . 1













.

By Lemma 4 the allocation of player 1 remains the same and the approximation

ratio is
1

b
. Consequently in order to achieve ratio less than

1

b
we must have hij =

f1...1:1...101...1 ≥ b. The solution of the equation n · b =
1

b
is
√

n.

2.7 The allocation graph of each player

The allocation part of the mechanism gives a partition of Rn×m
+ to nm different

regions, one for each possible different allocation a of the tasks to the players (re-

member that each task is allocated to exactly one player). Now the truthfulness

requirement imposes restrictions on the geometry of the projections of this mecha-

nism for fixed t−i, because it describes the game-theoretic situation player i faces:

Should he deviate and lie when all other players are fixed to their true values?

In what follows we will fix the values of the other players t−i for some player i. We

will concentrate on how a truthful mechanism for the scheduling problem separates

the regions with different allocations for player i, when the vector of variables ti
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takes values in R+
m. There are 2m regions as for each one of the m tasks we have

two choices: 1 if player i gets the task and 0 if he doesn’t.

We will follow an approach similar to the one in [35] that applies the ideas

from [26, 46] on this scheduling problem.

Recall that for every fixed t−i, and any two different assignments a, b for player

i we have defined f i
a:b(t−i) := sup{(b − a) · ti | ti ∈ Ri

b}.
For every player i and every fixed t−i, we define an edge-weighted directed graph

Gt−i
, the allocation graph, whose vertex set are all possible allocations of player i.

For each two allocations a, b the weight of the edge from a to b is f i
a:b(t−i).

It turns out that the difference of payments between two regions Rb and Ra should

be bounded from above by the weight of the edge from vertex a to vertex b on the

allocation graph. We can see this as follows: the mechanism is truthful so player i

does not have an incentive to falsely declare t′i instead of ti so pi(ai, t−i) − ai · ti ≥
pi(a′

i, t−i) − a′
i · ti, which can be rewritten as pi(ai, t−i) − pi(a′

i, t−i) ≥ (ai − a′
i) · ti

and consequently

pi(ai, t−i) − pi(a′
i, t−i) ≥ sup{(ai − a′

i) · ti | ti ∈ Ri
a} = f i

a′:a(t−i). (2.1)

The system of all possible inequalities (2.1) is feasible iff the associated network

contains no positive length cycle. But by [46] the associated network contains no

positive length cycle iff it does not have a positive length cycle of length 2, which is

exactly what the Monotonicity Property demands.

Definition 24 (Cycle monotonicity). An allocation algorithm satisfies cycle mono-

tonicity if for every player i, every t−i, every integer K and every cycle a1, . . . , aK , aK+1 =

a1 on the allocation graph
K

∑

k=1

f i
ak:ak+1

≤ 0.

It turns out that if we fix a node a of the allocation graph we can express the

payment for any other region Ra′ in terms of the values f i
a:a′(t−i).

In fact in the projections of the mechanism for fixed t−i, what we defined as

f i
ai:a′

i
(t−i) has yet another interpretation: the hyperplane f i

ai:a′
i
(t−i) = (ai − a′

i) · ti
separates the regions with assignments ai, a

′
i.

The following Lemma is an essential tool for the proof of Theorem 6 and points

out that for two regions Ra, Ra′ with Hd(a, a′) = 1 the inequality in (2.1) is al-
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ways satisfied with equality. Note however that any other pair of regions might

satisfy (2.1) with a strict inequality, which would mean that the two regions do not

share a common boundary point.

Lemma 6. Two regions Ra, Ra′ that share at least one common boundary point

satisfy

pi(a′, t−i) − pi(a, t−i) = fa:a′ = −fa′:a.

Proof. The proof is an extension of [ [46], Proposition 5]. By the premises of the

Lemma there exists a ti such that ti ∈ Ra ∩ Ra′ . Since ti ∈ Ra we have

pi(a′, t−i) − pi(a, t−i) ≥ fa:a′ ≥ (a − a′) · ti

and since ti ∈ Ra′ we also have

pi(a, t−i) − pi(a′, t−i) ≥ fa′:a ≥ (a′ − a) · ti,

which by the Monotonicity Property, fa:a′ + fa′:a ≤ 0, implies

(a − a′)ti ≥ −fa′:a ≥ fa:a′ .

So finally

fa:a′ ≤ pi(a′, t−i) − pi(a, t−i) ≤ −fa′:a = fa:a′ = (a − a′)ti.

Remark 5. An alternative definition for fa:a′ would be to define it as pi(a′, t−i) −
pi(a, t−i). The two definitions coincide when the regions Ra, Ra′ have a common

boundary point, and these are also the pairs of allocations for which we will need

this definition.

Lemma 7. Any cycle on the allocation graph in which each pair of consecutive nodes

corresponds to a pair of regions sharing a common boundary point has length zero.

Proof. By Cycle monotonicity we have fa1:a2
+ fa2:a3

+ . . . + fas−1:as
≥ 0. We then

follow the reverse direction on the previous cycle and as all pairs of consecutive nodes

on the path correspond to pairs of regions sharing a common boundary point, we

apply Lemma 6 and get fas:as−1
+. . .+fa3:a2

+fa2:a1
= −fa1:a2

−fa2:a3
−. . .−fas−1:as

≤
0. Combining the two inequalities we get fa1:a2

+ fa2:a3
+ . . . + fas−1:as

= 0.
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2.8 Related work

The scheduling problem on unrelated machines is one of the most fundamental

scheduling problems [27, 28]. The problem is NP-complete. Lenstra, Shmoys, and

Tardos [36] showed that it can be approximated in polynomial within a factor of 2

but no better than 3/2, unless P=NP.

Nisan and Ronen introduced the mechanism-design version of the problem in

the paper that founded the algorithmic theory of Mechanism Design [42, 43]. They

showed that the well-known VCG mechanism, which is a polynomial-time algorithm

and truthful, has approximation ratio n. They conjectured that there is no deter-

ministic mechanism with approximation ratio less than n. They also showed that no

mechanism (polynomial-time or not) can achieve approximation ratio better than

2. We improved it to 1 +
√

2, in [17, 19] and further to 1 + ϕ in [31].

Nisan and Ronen [42] also gave a randomized truthful mechanism for two players,

that achieves an approximation ratio of 7/4. Mu’alem and Schapira [40] proved

a lower bound of 2 − 1
n

for any randomized truthful mechanism for n machines

and generalized the mechanism in [42] to give a 7n/8 upper bound. Recently Lu

and Yu [37] gave a 1.67-approximation universally truthful randomized algorithm

improving it later on [38] to a 1.59-approximation algorithm.

In another direction, [16] showed that no fractional truthful mechanism can

achieve an approximation ratio better than 2 − 1/n. It also showed that fractional

algorithms that treat each task independently cannot do better than (n + 1)/2 and

this bound is tight.

In very recent paper [7] Ashlagi, Dobizinski and Lavi prove a lower bound of n

for a special class of mechanisms, which they call “anonymous”.

Lavi and Swamy [35] considered the special case of the same problem when the

processing times have only two possible values low or high, and devised a determin-

istic 2-approximation truthful mechanism. Very recently Yu [48] generalized their

results constructing a randomized 7(1 + ǫ)-approximation algorithm for the case

when the processing times belong to [Lj, Lj(1 + ǫ)]∪ [Hj, Hj(1 + ǫ)] where Lj < Hj

and ǫ < 1/16mn.

Another special case of the problem is the problem on related machines in which

there is a single value (instead of a vector) for every machine, its speed. Myer-

son [41] gave a characterization of truthful algorithms for this kind of problems
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(one-parameter problems), in terms of a monotonicity condition. Archer and Tar-

dos [5] found a similar characterization and using it obtained a variant of the optimal

algorithm which is truthful (albeit exponential-time). They also gave a polynomial-

time randomized 3-approximation mechanism, which was later improved to a 2-

approximation, in [2], and very recently to a PTAS by Dhangwatnotai, Dobzinski,

Dughmi and Roughgarden [21]. These mechanisms are truthful in expectation.

Auletta De Prisco, Penna and Persiano [8] provided a deterministic, monotone

(4 + ǫ) approximation algorithm for the case of constant number of machines m.

Andelman, Azar, and Sorani [1] improved this to a FPTAS and additionally gave

a 5-approximation algorithm for arbitrary m. Kovács improved the approximation

ratio to 3 [32] and to 2.8 [33].

Much more work has been done in the context of combinatorial auctions (see for

example [4, 11, 14, 22, 10, 23] and the references within).

Saks and Yu [46] proved that, for mechanism design problems with convex do-

mains of finitely many outcomes, which includes the scheduling problem, a simple

necessary monotonicity property of the allocations of different inputs (and without

any reference to payments) is also sufficient for truthful mechanisms, generalizing

results of [26, 34]. Monderer [39] showed that this result cannot be essentially ex-

tended to a larger class of domains. Both these results concern domains of finitely

many outcomes. There are however cases, like the fractional version of the schedul-

ing problem, when the set of all possible allocations is infinite. For these, Archer

and Kleinberg [3] provided a necessary and sufficient condition for truthfulness which

generalizes the results of [46].
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The geometry of truthfulness

3.1 The problem

There exists a simple necessary and sufficient condition for truthfulness in convex

domains and a finite number of outcomes, the Monotonicity Property. In single

parameter domains, like for example in an auction where there is only one item,

monotonicity is exactly the monotonicity we know from calculus and the most prac-

tical description of truthfulness we could hope for. The allocation should be a

monotone (for the case of auctions an increasing, while for the case of scheduling

a decreasing) function of the player’s valuation for the item. However for the case

of two or more items Monotonicity is a local condition that should be satisfied by

any pair of instances of the problem and does not give us any clue about the global

picture of the mechanism, when considering the whole space of inputs together. We

would instead need a global and more intuitive description, hopefully also practical

for proving lower bounds. We replace Monotonicity by a geometrical and global

characterization of truthfulness, for the case when the valuations are additive.

Until now such a characterization was known in the context of the scheduling

unrelated machines problem only for the easy case of two tasks [19] and it turned

out to be a a quintessential element of the characterization proof in [18] and the

lower bound in [19]. We believe that our result here can be used for obtaining new

lower bounds. The only discouraging fact is that even for the case of 3 tasks the

different mechanisms are too many and geometrically complicated.

No matter how many are the players participating in a mechanism, determining
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whether a mechanism is truthful boils down to a single-player case. Truthfulness

requires that for fixed values of the other players, a player should not be able to

increase his utility by lying. Studying the mechanism for fixed values of the other

players is like studying a single-player case. Consequently in our setting there is

a single player and m different indivisible items (or tasks). The player’s type is

denoted by the vector t = (t1, . . . , tm), where ti is the valuation of the bidder for the

i-th item/task and the allocation is denoted by a = (a1, . . . , am) where ai ∈ {0, 1}.
We assume that the bidder has additive valuations and hence the bidder’s valua-

tion function when his type is t and his allocation a is v(a, t) = a · t. In fact it is easy

to see that our results also apply if the valuations are of the form v(a, t) = λ(a·t)+γa

for some constants λ, γa (we can have one different γa for each different allocation

a). The reason for this is simple namely these valuations also satisfy the Monotonic-

ity Property and moreover the possible truthful mechanisms for such valuations are

like in Figure 4.1 (this would not be the case for valuations with v(11) = t1 · t2 or

v(11) = 2t1 + t2 as the sloped hyperplane would not be 45◦). A mechanism consists

of an allocation algorithm a and a payment algorithm p. We make the standard

assumption that the utilities are quasilinear, that is the utility of the player is

u(a, t) = v(a, t) − p(a).

The allocation part of the mechanism gives a partition of the space R
m of possible

values of a player to 2m different regions, one for each possible different allocation

a of the player. But which are exactly the possible partitions of the space the

mechanism creates? This is exactly the question we address in this paper.

We know [46] that a mechanism is truthful if and only if its allocation part

satisfies the Monotonicity Property, which is a necessary and sufficient condition for

truthfulness, that only involves the allocation part of the mechanism. Consequently

by determining the possible partitions of the input space created by the allocation

part of the mechanism we will eventually give a characterization of truthfulness.

Our problem can be reformulated as an interesting, simple and fun geometrical

problem (forgetting everything about mechanisms and game theory) as follows:

Definition 25 (Geometrical statement of the problem). Suppose you have the m-

dimensional cube [0, 1]m. The vector a, formed by the coordinates of each one of the

vertices of the cube, is the “allocation”(/label) at this point. Consequently there

are 2m different possible “allocations”. We want to give to each one of the points in

the interior of the cube one of the possible “allocations” so that the monotonicity
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condition (t − t′)(a − a′) ≤ 0 is satisfied for each pair of different points t, t′ in the

cube and their corresponding “allocations” a, a′. Which are the partitions of R
m

that satisfy this property?

As it has already been noticed in [26] in the case of additive valuations the

boundaries of the mechanism are hyperplanes of a very specific form, every region

created by this partition is a convex polyhedron. In this paper we show exactly which

(rather few) polytopes are involved in such a partition. For proving our results we

reduce the problem to that of determining the allocation graph of the mechanism,

i.e. which of the regions share a common boundary. We can then determine the

exact geometrical shape of the mechanism because the hyperplane that separates

two regions can be easily derived from the monotonicity property.

Our results apply directly to the scheduling unrelated machines problem giving

lower bounds for two very interesting special cases of the problem.

3.1.1 Our Tools

Besides the potential applications of our characterization, we believe that also the

method we introduce for studying the allocation graph is of particular interest as it

provides a very simple way to handle a very complicated partition of the space.

We propose a new, practical, method for determining all possible allocation

graphs and the geometrical shapes of the mechanism: For each region Ra of the

mechanism instead of considering its complicated geometrical shape we define a

box that contains the region. The signs of distances between parallel to each other

boundaries of the mechanism determine whether two of these boxes intersect. If

two boxes intersect then the corresponding regions share a common boundary. Al-

ternatively if two boxes intersect then there is an edge between the corresponding

edges in the allocation graph. These distances however are not independent from

each other. Applying cycle-monotonicity for appropriately chosen zero-length cycles

allows us to determine how these constants relate. As boundaries between regions

that differ only in one allocation always exist we will concentrate on the subgraph of

the allocation graph that consists of the edges corresponding to Hamming distance-1

boundaries. For m tasks it is practical to consider this graph as an m-dimensional

hypercube.
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3.2 The example of two tasks demonstrates the

idea

The idea of our approach is best depicted if we apply it for the easy case of two

tasks (for which we already know that the two possible mechanisms are depicted

in Figure 4.1). We observe that the two lines (t1 = f11:01 and t1 = −f00:10) that

are vertical to the axis t1 and the two lines (t2 = f11:10 and t2 = −f01:00) that are

vertical to the axis t2 have the same distance (otherwise the sloped line would not

be 45◦).

Another, purely algebraic and more straightforward way, way to obtain this fact

is to just to apply once cycle monotonicity. Taking the cycle 00 → 01 → 11 → 10 →
00 we get f00:10+f10:11+f11:01+f01:00 = 0 or equivalently f11:01+f00:10 = f11:10+f00:01.

If we define c12 := f11:01 + f00:10 (This is the distance between the two lines vertical

to the axis t1.) then by the previous cycle it turns out that the distance between

the two lines vertical to the axis t2, which can be expressed as f11:01 + f00:10 is also

equal to c12. Notice that we did not take two cases and did no drawing.

We are now ready to describe the allocation graph of the mechanism: Region R11

is contained in the box t1 ≤ f11:01, t2 ≤ f11:10. Region R00 is contained in the box

t1 ≥ f10:00, t2 ≥ f01:00. Regions R11 and R00 share a common boundary line if and

only if the boxes that contain them intersect i.e. if and only if c12 > 0. (Similarly

regions R01 and R10 share a common boundary line if and only if the boxes that

contain them intersect i.e. if and only if c12 < 0.) That is the sign of c12 determines

which of the two possible shapes has the mechanism.

Knowing the allocation graph we can then very easily draw the picture of the

mechanism. In what follows we generalize this idea to describe the allocation graph

and the geometry of a truthful mechanism.

3.3 Definitions

Definition 26. We will define the Hamming Distance Hd(a, b) between two vectors

a, b, as the number of positions in which the two vectors are different.

Lemma 8. Every region Ra satisfies

Ra ⊆ Fa := {(t1, . . . , tm) | t1 ≤ ((−1)a1fa:(a−1,1−a1), . . . , tm ≤ (−1)amfa:(a−m,1−am)}.
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This means that every region Ra is included in a box defined by the boundaries

of Ra with all regions Rb such that Hd(a, b) = 1. The proof is immediate by the

monotonicity property and the definition of fa:b.

We proceed to define some constants that generalize this idea we demonstrated

for the case of two tasks. The constant cij|a−{i,j}
measures the distance between the

separating hyperplanes of the mechanism ti = f11a−{i,j}:01a−{i,j}
and ti = f10a−{i,j}:00a−{i,j}

,

which are two parallel hyperplanes corresponding to Hamming distance 1 bound-

aries. This constant fully describes the geometry of the mechanism if the allocation

of all tasks, except for tasks i, j, is fixed to a−{i,j}. To provide some intuition why we

choose these consider that in a decisive mechanism this would give an asymptotic

picture of the mechanism: If the values of only two tasks i, j are allowed to be vari-

ables, while the remaining tasks with allocation 1 are fixed to the biggest possible

value (+∞) and the tasks with allocation 0 are fixed to the smallest possible value,

this constant describes the geometry of the mechanism that allocates tasks i, j.

Definition 27. For all i, j and all possible m − 2-tuples (/allocations) a−{i,j} we

define

cij|a−{i,j}
:= f11a−{i,j}:01a−{i,j}

+ f00a−{i,j}:10a−{i,j}

= f11a−{i,j}:10a−{i,j}
+ f00a−{i,j}:01a−{i,j}

(3.1)

But are these constants independent from each other? As the following Lemma

shows, the answer is no and the relation between these constants is derived from

Cycle Monotonicity.

Lemma 9. If a mechanism is truthful then the constants cij|a−{i,j}
satisfy the follow-

ing equation:

cij|1a−{i,j,k}
− cij|0a−{i,j,k}

= cik|1a−{i,j,k}
− cik|0a−{i,j,k}

(3.2)

Proof. (Sketch) We get this from the following cycle (also depicted in Figure 3.2)

f111:011 + f011:010 + f010:000 + f000:001 + f001:101 + f101:100 + f100:110 + f110:111 = 0.

By Lemma 8 each region Ra of the mechanism is contained in a box formed by

the separating hyperplanes between Ra and all regions with assignment in Hamming

distance 1 from a. If we concentrate on a pair of intersecting regions, then the boxes

that contain them have a non-empty intersection. But it is also the other way round

:
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Lemma 10. If the boxes corresponding to two regions intersect then the regions

share a common boundary hyperplane.

Proof. Consider the projections of the mechanism for two tasks i, j when the process-

ing times for the rest of the tasks are fixed. Then all other terms of the monotonicity

property vanish except for the terms corresponding to tasks i, j. Consequently for

fixed values of the other players the mechanism should have one of the two shapes

in Figure 4.1.

Suppose that the boxes Ba, Bb corresponding to regions Ra, Rb intersect. Say

that a, b differ in the allocation of tasks i, j (possibly also in the allocation of other

tasks). Then taking the projection for fixed t−{i,j} it is obvious that the two regions

share a common boundary.

We proceed to define di
a:b as the difference of the Hd-1 boundaries on axis i

corresponding to two distinct regions Ra, Rb. We have di
a:1−a > 0 for all i = 1, . . . ,m

if and only if regions Ra and R1−a intersect.

Even though the geometry of the mechanism is complicated it turns out that we

can derive a general formula for the di
a:bs using now a more complicated zero-length

cycle on the allocation graph.

Definition 28. We define the distance di
a:b := fa:1−ai,a−i

+ fb:1−bi,b−i
.

Lemma 11. We have di
a:b = di

b:a (symmetry) and di
a:b = −di

1−ai,a−i:1−bi,b−i
.

Proof. Directly from the definition we have di
a:b = f1−ai,a−i:a+f1−bi,b−i:b and di

1−ai,a−i:1−bi,b−i
=

fa:1−ai,a−i
+ fb:1−bi,b−i

. Consequently di
a:b = −di

1−ai,a−i:1−bi,b−i
.

Lemma 12. The distance di
a:1−a can be expressed as the following sum of constants:

di
a:1−a :=

∑

j 6=i,j∈{1,...,m}

(−1)ai+ajcij|b−{i,j}
,

where the k-th coordinate of the allocation bk is bk =







1 − ak if k < j

ak if k > j.

For example we have

d1
a:1−a := (−1)a1+a2c12|a−{1,2}

+ (−1)a1+a3c13|1−a2a−{1,2,3}
+

(−1)a1+a4c14|1−a21−a3a−{1,2,3,4}
+ . . . + (−1)a1+amc1m|1−a21−a3...1−am−1

.

Angelina Vidali 42



Game-theoretic analysis of networks

Note that d1
11:00 = c1,2 = c so Definition 28 is just an extension of Definition 27.

We include the technical proof of Lemma 12 in the Appendix.

3.4 Characterization of 3-Dimensional mechanisms

3.4.1 Calculating the distances

We believe that the tools we have developed in the preceding section are useful for the

study of the allocation graph for an arbitrary number of tasks m. We demonstrate

this by using them in order to determine the allocation graphs and the corresponding

geometrical shapes a truthful mechanism can take for the case m = 3.

For the case of 3 tasks we will apply Lemmas 12 and 11 in order to compute the

distances di
a:1−a with respect to the constants ci,j|a−{i,j}

. For simplicity of notation we

will write dj instead of dj
111:000, for j = 1, 2, 3 and it turns out that all other distances

dj
a:b, between regions Ra and Rb, can be expressed using the three distances d1, d2, d3

between regions R111 and R000. We define the constant e as

e = c12|0 − c12|1 = c13|0 − c13|1 = c23|0 − c23|1. (3.3)
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then c12|0 = c12|1 + e and we can rewrite the equalities in the following way:

d1
111:000 = c13|1 + c12|0 = c13|1 + c12|1 + e = c13|0 + c12|0 − e = d1

d2
111:000 = c12|1 + c23|0 = c12|1 + c23|1 + e = c12|0 + c23|0 − e = d2

d3
111:000 = c13|1 + c23|0 = c13|1 + c23|1 + e = c13|0 + c23|0 − e = d3

d1
011:100 = −d1

d2
011:100 = −c12|1 + c23|1 = d3 − d1

d3
011:100 = −c13|1 + c23|1 = d2 − d1

d1
101:010 = −c12|1 + c13|1 = d3 − d2

d2
101:010 = −d2

d3
101:010 = = −(d2 − d1)

d1
110:001 = −(d3 − d2)

d2
110:001 = −(d3 − d1)

d3
110:001 = −d3

3.4.2 Properties satisfied by the allocation graph

Lemma 13. There always exist two regions Ra, Rb in Hd = 3 such that di
a:b ≥ 0 for

i = 1, 2, 3.

Proof. Suppose towards a contradiction that the statement of the lemma is not true.

Then R111, R000 do not share a common boundary. There are three cases: either

d1, d2, d3 are all negative, or two of them are negative or one of them is negative.

Suppose that d1 ≤ d2 ≤ d3 (the proof for any other relative ranking of the three

distances is similar we would just find a different pair of intersecting boxes). Then

the three cases are: d1 ≤ d2 ≤ d3 < 0 or d1 ≤ d2 < 0 ≤ d3 or d1 < 0 ≤ d2 ≤ d3.

In any of the cases we have d1
011:100 ≥ 0, d2

011:100 ≥ 0, d3
011:100 ≥ 0 and consequently

regions R011, R100 intersect.

Remark 6. In what follows we will make the assumption that this pair of regions
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Ra, Rb in Hd = 3 such that di
a:b ≥ 0 for i = 1, 2, 3, guaranteed to exist by Lemma 13

are R111 and R000.

For any mechanism we present here you can get another truthful mechanism

by applying the following rotations: Think of the mechanism as a partition of the

cube, if you rotate one of the possible partitions so that the faces of the cube go to

faces of the cube after the rotation, you also get a truthful mechanism. The reason

is that the slope of the separating hyperplane between two regions only depends

on their Hamming Distance, i.e. on the number of tasks on which they differ. The

characteristic of the rotation we described is that it respects the Hamming distances.

Lemma 14. If R111 and R000 intersect then

a) if e < 0 then at least two of the constants c12|1, c13|1, c23|1 are strictly positive,

b) if e > 0 then at least two of the constants c12|0, c13|0, c23|0 are strictly positive.

Proof. We will deal with the case e < 0 (the other case is very similar). Observe

the second expression for di. Since R111 and R000 share a common boundary we

should have di > 0 for i = 1, 2, 3. Each one of the constants c12|1, c13|1, c23|1 appears

exactly in two of the three distances and e < 0. Suppose towards a contradiction

that two of the constants were negative, then at least one of the distances di would

be negative, contradiction.

Lemma 15. If a pair of regions Ra, R1−a share a common Hd-3 boundary then no

other pair Rb, R1−b of regions share a common Hd-3 boundary.

Proof. Suppose for example that R111, R000 share a common Hd-3 boundary then

this boundary is a hyperplane of the form t11 + t12 + t13 =constant. Consequently

the boxes that contain the regions intersect and more specifically all three distances

d1, d2, d3 are positive. But as by Lemma 11 d1
011:100 = −d1, we have d1

011:100 < 0 and

consequently R011, R100 do not intersect on axis t1 and thus cannot share a common

Hd-3 boundary. Similarly as d2
101:010 = −d2 regions R101, R010 do not intersect on

axis t2 and thus cannot share a common Hd-3 boundary and so on.

Lemma 16. If R111 and R000 share a common boundary and c12|1 > 0, c13|1 <

0, c23|1 > 0, e < 0 then we also have c12|0 > 0, c13|0 < 0, c23|0 > 0.

Proof. Since R111 and R000 share a common boundary d1 = c13|1 + c12|0 > 0 conse-

quently c12|0 > −c13|1 > 0. As e = c13|0 − c13|1 < 0 we have c13|0 < c13|1 < 0. Finally

d2 = c13|1 + c23|0 > 0 and consequently c23|0 > −c13|1 > 0.
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3.4.3 All possible Mechanisms

Definition 29. A degenerate version of a mechanism M is a mechanism for which

some of the constants cij|0, cij|1, d
k
a:b, for some i, j, k ∈ {1, 2, 3} and some allocations

a, b, become 0, while all other such constants retain the same sign as in the non-

degenerate mechanism.

We will describe the possible shapes of the mechanism when a Hd-3 boundary

exists and thanks to Lemma 13 any other mechanism is a degenerate version of a

mechanism with a Hd-3 boundary. Summarizing all restrictions to the shape of the

mechanism we obtained in the previous section we get the following characterization:

Theorem 12. The possible truthful mechanisms are the following five possible parti-

tions of the space and all their rotations. (In Figure 3.1 you can see their geometrical

shapes.)

As for any mechanism we give here we also include in our characterization all

its rotations, we suppose without loss of generality that R111, R000 share a com-

mon boundary, that e < 0 and that the two constants guaranteed to be positive by

Lemma 14 are c12|1 > 0, c23|1 > 0.

1. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 > 0, c23|0 > 0

2. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 < 0

3. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 < 0, c13|0 < 0, c23|0 > 0

4. c12|1 > 0, c13|1 > 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0

5. c12|1 > 0, c13|1 < 0, c23|1 > 0, c12|0 > 0, c13|0 < 0, c23|0 > 0.

3.4.4 Knowing a few distances we can draw the whole mech-

anism

Now we can fully describe the boxes that contain different regions of the mechanism.

Let for simplicity in notation f1 := f111:011, f2 := f111:101, f3 := f111:110. In fact given
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Figure 3.1: 3D models of the possible partitions (up to rotation). Looking just at the

blue projections you can determine the constants cij|0 and from the red projections

the constants cij|1.

four of the constants cij|a as input it is easy to find the exact shape of the mechanism

thanks to the following relations

F111 := (f111:011, f111:101, f111:110) = (f1, f2, f3)

F000 := (f1 − d1, f2 − d2, f3 − d3)

F011 := (f1, f2 − c12|1, f3 − c13|1)

F101 := (f1 − c12|1, f2, f3 − c23|1)

F110 := (f1 − c13|1, f2 − c23|1, f3)

F100 := (f1 − d1, f2 − c23|1, f3 − c23|1)

F010 := (f1 − c13|1, f2 − d2, f3 − c13|1)

F001 := (f1 − c12|1, f2 − c12|1, f3 − d3).

Having found a general formula for each one of these boxes we can also describe an

algorithm for constructing the geometrical shape of the mechanism. The input is

four of the constants cij|a (knowing these we can compute the other two constants)

and the output is the exact shape of the mechanism. We first construct all boxes.

Wherever two or more boxes intersect we have to divide the points in the intersection

between the regions corresponding to the intersecting boxes. At this point we have

to be cautious, because if we are given two intersecting boxes in Hd = 3 then there

are infinitely many possible separating hyperplanes between them. However if we
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first consider the intersection between Hd = 2 boxes there is a single hyperplane that

can separate the two regions. Then consider the intersecting boxes with allocations

in Hd = 3 (there is at most one such pair as we will see in lemma 15). As we

have already constructed the Hd ≤ 2 boundaries there is a single possible Hd-3

separating hyperplane. It is not hard to implement this algorithm and given four

of the constants cij|a of the mechanisms we can fully determine the allocation graph

and the geometrical shape of the mechanism. We next proceed to explore which are

the possible geometrical shapes of the mechanism, which depend on the signs of the

distances.

3.5 Lower bounds for some Scheduling Mecha-

nisms

Observing the figures we got from our characterization we see that many of the

regions have the shape of a box, for some of these cases the region that has the

shape of the box is R1...1. For these cases we can prove a lower bound of 1 +
√

n

(while the lower bound for the general case is still a small constant).

Theorem 13. Every mechanism for which R1...1 is a box has approximation ratio

at least 1 +
√

n.

Proof. We will just show that it has ratio at least
√

n. By adding some additional

dummy tasks (like in the proof of the 1+
√

2 lower bound [17]) it is an easy exercise

to improve this to a lower bound of 1 +
√

n.

Consider the following two n × n matrices of processing times













b ⋆ . . . b ⋆

1 . . . 1
...

. . .
...

1 . . . 1

























ǫ ⋆ . . . b + ǫ . . . ǫ ⋆

1 . . . 1 ⋆ . . . 1
... . . . 1

. . .
...

1 . . . 1 . . . 1













.

There exists some b such that the first player gets all tasks, so that the allocation in

the first instance is the one indicated by the stars. If there exists some b ≥ 1 then

the mechanism has approximation n and we are done. Suppose that 0 < b < 1 and

choose b to be the supremum of all these values, the approximation ratio is n · b.
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There exists a task j such that f1...1:a = b where a differs from (1, . . . , 1) only in

position j. Now consider the second matrix of processing times, since f1...1:a = b and

since R1...1 has the shape of a box, the allocation is the one indicated by the stars

and the approximation ratio is
1

b
. The solution of the equation n · b =

1

b
is
√

n.

Finally there is a non-trivial geometrically defined class of mechanisms for which

we can provide an n lower bound.

Definition 30. We will say that a mechanism is non-penalizing if in the allocation

graph no pair of regions of the form Ra10, Rb01, where a, b are (m − 2)-dimensional

allocation vectors, share a common boundary.

The first mechanism in Figure 3.1 is a example of such a mechanism. The

intuition behind these mechanisms is that, if for fixed values of the other players, a

player lowers one of his values he only gets more tasks.

Theorem 14. Every non-penalizing mechanism has approximation ratio at least n.

The proof uses the same initial instance and is very similar to the proof of a

lower bound of n for threshold (/additive) mechanisms.

Proof. For a better understanding we will give the proof of a lower bound of 3 for the

case of 3 tasks. Exactly the same technique gives a lower bound of n for n2 − n + 1

tasks and n players as this number of tasks guarantees that one of the players will

get at least n tasks.

We start with the instance






1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1







where we can assume w.l.o.g. that player 1 gets at least 3 tasks. The idea is to lower

all values of player 1 to some small ǫ > 0 except for 3 (and in the general case n)

values. If we set a task that gets allocated to player 1 to ǫ, then by the Monotonicity

Property the allocation of player 1 remains the same. We then lower one by one

all of the tasks that are not assigned to player 1. Player 1 doesn’t loose any of the

tasks initially assigned to him (he might however get more tasks than those initially

assigned to him), because the mechanism is non-penalizing mechanism. We continue
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until all tasks of player 1 except for the 3 that were initially assigned to him are

zero. The approximation ratio is 3.

Example 8. For example if the original assignment is the one marked by the stars

we get:







1 ⋆ 1 ⋆ 1 ⋆ 1 1 1 1 ⋆

1 1 1 1 ⋆ 1 1 1

1 1 1 1 1 ⋆ 1 ⋆ 1






→







1 ⋆ 1 ⋆ 1 ⋆ 0 0 0 0 ⋆

1 1 1 1 1 1 1

1 1 1 1 1 1 1






.

The tasked whose allocation we do not indicate can be allocated to anyone of the

players, but the approximation ratio we get is at least n for any of these allocations.

Exactly the same technique gives a lower bound of n for n2 − n + 1 tasks and n

players as this number of tasks guarantees that one of the players will get at least

n tasks.

3.6 Concluding Remarks and open problems

Our characterization is only for the case of 3 tasks, the tools we have developed to

obtain this characterization are however for the general case of m tasks. Can we

find a succinct way to describe all possible allocation graphs for the general case?

We would like to stress the connection of our results with the scheduling un-

related machines problem. The lower bounds in the last section show that many

mechanisms have bad approximation ratio just because of the geometrical shape of

their projections. Finally we believe that the characterization for the case of three

tasks can be used to improve the existing [31] lower bound of 2.465 for the case of

4 machines to a better constant.

3.7 Some more figures

We have already presented all possible mechanisms, but in this section we will

present some of their degenerate versions just in order to make more plausible the

notion degeneracy.
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Figure 3.2: The first path gives the equations: c1,2|1 − c1,2|0 = c1,3|1 − c1,3|0 and

c1,2|1 − c1,2|0 = c2,3|1 − c2,3|0. The second path gives the expression for d1
111:000.

Remark 7. Actually in the degenerate cases the allocation graph has some additional

edges, which are not depicted in Figure 3.4, edges between regions that do not share

a full-dimensional boundary. It is very easy to figure out from the geometrical shapes

which are these edges but we do not depict them in order to keep the figure easier

to understand and more relevant to the geometrical shape.
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Figure 3.3: Possible (up to rotation) mechanisms with a Hd-3 boundary and all

constants cij|0, cij|1, d
k
a:b 6= 0 and the corresponding allocation graph.
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Figure 3.4: Some degenerate mechanisms and their corresponding allocation graph.

The Hd-1 boundaries are the edges of the cube. (The edges on the allocation

graph corresponding to Hd-2 boundaries are red and the ones corresponding to

Hd-3 boundaries blue.)
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Chapter 4

A lower bound of 1 +
√

2

4.1 A geometrical lemma

In our proof of the lower bound, we will exploit the Monotonicity Property of truthful

mechanisms. In this section, we present an important lemma that follows from the

Monotonicity Property and together with Lemma 4 will be the tools for our proof.

We will also used repeatedly Lemma 4, which states that if a machine gets a

set of tasks when it declares ti, it will get exactly the same set of tasks if we lower

the execution time of the tasks allocated to the machine and increase the execution

time of the remaining tasks.

It is convenient to allow instances with times tij = ∞. When only finite times

are allowed, all the statements are still true; in this case ∞ will simply denote an

appropriate arbitrarily high value.

To simplify the presentation, when we apply Lemma 4, we will increase or de-

crease only some values of a machine, not all its values. The understanding will be

that the rest of the values increase or decrease appropriately by a tiny amount which

we omit to keep the expressions simple.

The second lemma is a useful 2-dimensional property of truthful mechanisms. A

useful property that we can extract from Lemma 3, and which is going to play an

important role in the proof of our main result, is the following:

Lemma 17. Fix all values of m tasks except of the values tij and tik. Assume that a

truthful mechanism assigns both tasks to machine i when (tij, tik) = (1, 0) and when

(tij, tik) = (0, 1). Assume also that the mechanism assigns exactly one of the 2 tasks
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Figure 4.1: Lemma 17.

to machine i when (tij, tik) = (b, b) for some b > 1. Then the mechanism assigns

both tasks to machine i when (tij, tik) = (1, 1).

The proof is a simple case analysis and it is essentially shown in Figure 4.1.

4.2 The proof of the main result

We will employ instances with 3 machines and 5 tasks. We will assume throughout

that the allocation algorithm does not allocate these values (otherwise the mecha-

nism has arbitrarily high approximation ratio).

The general idea of the proof is the following: We start with the set of tasks

t =







0 ∞ ∞ b b

∞ 0 ∞ b b

∞ ∞ 0 b b







where a > 1 is a parameter which will be fixed later. This set of tasks has enough

symmetries so that it essentially admits two distinct allocations (up to symmetry).

For each allocation, we increase or decrease some values appropriately. With the

help of the lemmas of the previous section, we show (in Lemma 19 below) that in

order to keep the approximation ratio low, the following set of tasks must have the

allocation indicated by the stars (in which the first machine gets both tasks 4 and

5):

t =







0 ⋆ ∞ ∞ 1 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ ⋆0 b b






.
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This is sufficient to obtain the lower bound as we will see later.

Lemma 18. For the instance






0 ∞ ∞ 0 1

∞ 0 ∞ b b

∞ ∞ 0 b b







if the first machine does not get both tasks 4 and 5, then the approximation ratio of

the algorithm is at least 1 + b.

Proof. Suppose that the premises of the lemma hold. As a result, one of machines 2

and 3 will get one of tasks 4 and 5. Suppose without loss of generality that machine

2 gets one of tasks 4 and 5. We raise the 0 of the second player and make it 1 and

by Lemma 4 its allocation does not change.

That is, if machine 2 gets task 5, we have







0 ⋆ ∞ ∞ 0 1

∞ 0 ⋆ ∞ b b ⋆

∞ ∞ 0 ⋆ b b






→







0 ⋆ ∞ ∞ 0 1

∞ 1 ⋆ ∞ b b ⋆

∞ ∞ 0 ⋆ b b






,

whichever the allocation of the 4th task is (that’s what is meant by the absence of

a star in the 4th column). Similarly, if machine 2 gets task 4, we have







0 ⋆ ∞ ∞ 0 1

∞ 0 ⋆ ∞ b ⋆ a

∞ ∞ 0 ⋆ b b






→







0 ⋆ ∞ ∞ 0 1

∞ 1 ⋆ ∞ b ⋆ b

∞ ∞ 0 ⋆ b b







whichever the allocation of the 5th task is. In either case the cost is at least 1 + a,

while the optimal cost is 1 and is achieved by the allocation







0 ⋆ ∞ ∞ 0 ⋆ 1 ⋆

∞ 1 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






.

By symmetry, the previous lemma holds also for the case when the processing

times of the first player is (0,∞,∞, 1, 0) instead of (0,∞,∞, 0, 1).
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Lemma 19. If a truthful mechanism has approximation ratio less than 1 + b then

the first machine should get both tasks 4 and 5 of the matrix of processing times

t =







0 ∞ ∞ 1 1

∞ 0 ∞ b b

∞ ∞ 0 b b






.

Proof. Consider the matrix of processing times

t =







0 ∞ ∞ b b

∞ 0 ∞ b b

∞ ∞ 0 b b






.

Without loss of generality, the third machine gets none of the tasks 4 and 5. We

essentially have two cases.

Case 1: One of machines 1 and 2, suppose without loss of generality that this

is machine 1, gets both tasks 4 and 5.







0 ⋆ ∞ ∞ b ⋆ b ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b







Using Lemma 4, we can lower the values of t14 and t15 to 1 without changing the

allocation. So we have the indicated allocation for the instance






0 ⋆ ∞ ∞ 1 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






.

Case 2: Tasks 4 and 5 are allocated to different machines. Without loss of

generality, machine 1 gets task 4 (as shown in the first of the three sets of tasks

and allocations below). Recall that in the previous lemma (Lemma 18) we showed

that the middle matrix of processing times below must have the allocation shown

in order to keep the approximation ratio lower than 1 + b. By symmetry, the same

is true for the third matrix of processing times below







0 ∞ ∞ b ⋆ b

∞ 0 ⋆ ∞ b b ⋆

∞ ∞ 0 ⋆ b b






,







0 ⋆ ∞ ∞ 0 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






,







0 ⋆ ∞ ∞ 1 ⋆ 0 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






.
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This is the point in our proof where we consider the geometry of the mechanism.

We use Lemma 17 for i = 1, j = 4, and k = 5. The lemma implies that the following

set of tasks have the indicated allocation







0 ⋆ ∞ ∞ 1 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






,

which proves the lemma.

We now have all the necessary ingredients to prove our main theorem.

Theorem 15. There is no deterministic mechanism for the scheduling problem with

3 or more machines with approximation ratio less than 1 +
√

2.

Proof. We will prove that the approximation ratio of any truthful algorithm is at

least min{1 + b, 1 + 2/b}; for b =
√

2, we have 1+b = 1+2/b and the approximation

ratio is at least min{1 + b, 1 + 2/b} = 1 +
√

2.

By Lemma 19, in order to have approximation ratio lower than 1 + a, the al-

location of the following matrix of processing times should be as indicated by the

stars

t =







0 ⋆ ∞ ∞ 1 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b






.

We can now increase t11 to b. By Lemma 4, this does not change the allocation of

the first machine. But then for the matrix of processing times and the indicated

allocation below






b ⋆ ∞ ∞ 1 ⋆ 1 ⋆

∞ 0 ⋆ ∞ b b

∞ ∞ 0 ⋆ b b







the cost is 2+b, while the optimum cost is b. The approximation ratio is 1+2/b. Con-

sequently any truthful algorithm has approximation ratio at least min{1 + b, 1 + 2/b}.
Of course, if the number of machines is more than 3, the approximation ratio

cannot be lower (by setting, for example, all times of the additional machines to

∞).
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Remark 8. By carefully examining Lemma 17 and the proof one can see that if

we knew that the mechanism is always like in the first case of Figure 4.1(i.e. if

R10, R01 are boxes) then we would get a lower bound of 1 + φ. This is because

in this case a stronger version of Lemma 17 holds namely that: “Fix all values

of m tasks except of the values tij and tik. Assume that a truthful mechanism

assigns both tasks to machine i when (tij, tik) = (1, 0) and when (tij, tik) = (0, 1).

Assume also that the mechanism assigns exactly one of the 2 tasks to machine i

when (tij, tik) = (b, b) for some b > 1. Then the mechanism assigns both tasks to

machine i when (tij, tik) = (1, b) or when (tij, tik) = (b, 1)”.

In the next section we will eventually get a lower bound of 1 + φ for the general

case but using a more involved proof and employing instances with more tasks.

4.3 Lower bound for other Lp norms

The objective in the scheduling problem is to minimize the makespan, i.e. to min-

imize the maximum completion time, or in other words, to minimize the L∞ norm

of the machine loads. On the other hand the goal achieved by the VCG, which is

the best known algorithm, is that of minimizing the sum of completion times, in

other words, to minimize the L1 norm of the machine loads. It turns out that both

our lower bound proof can be easily adapted in order to get lower bounds for all Lp

norms 2 ≤ p < ∞ where Lp(t) =
(
∑n

i=1(ai · ti)p
) 1

p .

Using the proof of the lower bound of 1 +
√

2 we get the equation

(

(1 + a)p
) 1

p

(

1p + 1p
) 1

p

=

(

(2 + a)p
) 1

p

(

ap + ap + ap
) 1

p

or equivalently

(1 + a)

2
1

p

=
2 + a

3
1

p a
.

For example if p = 2 the equation becomes
(1 + a)√

2
=

2 + a

a
√

3
, which has the solu-

tion a ≈ 1.189. This proves an approximation ration of 1.547 for the objective of

minimizing the L2 norm.
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Similarly the proof of the lower bound of 1 + ϕ gives the equation

(

(1 + a)p
) 1

p

n
1

p

=

(

(2 + a)p
) 1

p

(

ap + ap + ap
) 1

p

.
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Chapter 5

A lower bound of 1 + ϕ

5.1 A lower bound of 1 + ϕ for n → ∞ machines.

The main result of this section is

Theorem 16. There is no deterministic mechanism for the scheduling problem with

n → ∞ machines with approximation ratio less than 1 + ϕ.

Moreover for any fixed number of players n, the solution of the equation

1 +
1

b
+

1

b2
+ . . . +

1

bn−1
= 1 + b.

is a lower bound for the approximation ratio (Table 5.1.)

We shall build the proof of the theorem around the instance
















0 ∞ · · · ∞ ∞ 1 b · · · bn−2

∞ 0 · · · ∞ ∞ b b2 · · · bn−1

. . .

∞ ∞ · · · 0 ∞ bn−2 bn−1 · · · b2n−4

∞ ∞ · · · ∞ 0 bn−1 bn · · · b2n−3

















,

n 2 3 4 5 6 7 8 . . . ∞
Lower bound 2 2.324 2.465 2.534 2.570 2.590 2.601 . . . 2.618

Table 5.1: The lower bound given by Theorem 16 for few machines.
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where b ≥ 1 is a parameter and ∞ denotes an arbitrarily high value. Eventually, we

will set b = ϕ when n → ∞. We let however b to be a parameter for clarity and for

obtaining better bounds for small n.

The lower bound will follow from the fact (which we will eventually prove) that

every truthful mechanism with approximation ratio less than 1+ b must allocate all

n−1 rightmost tasks to the first player. The proof of this fact is by induction. How-

ever, the induction needs a stronger induction hypothesis which involves instances

of the form

T (i1, . . . , ik) =













0 ∞ · · · ∞ bi1 bi2 · · · bik

∞ 0 · · · ∞ bi1+1 bi2+1 · · · bik+1

...
. . .

...
. . .

...

∞ ∞ · · · 0 bi1+n−1 bi2+n−1 · · · bik+n−1













,

where 0 ≤ i1 < i2 < . . . < ik are natural numbers and k ≤ n − 1. We allow these

instances to have additional tasks for which some value is 0, i.e., additional columns

with at least one 0 entry in each one. This is only for technical reasons and will play

no significant role in the proof (and it definitely does not affect the optimal cost).

We will call the first n tasks dummy. Observe that every mechanism with

bounded approximation ratio must allocate the i-th dummy task to player i.

Remark 9. Notice that the optimal allocation for T (i1, . . . , ik) has cost bik . Further-

more, if i1, i2, . . . , ik are all successive natural numbers, then the optimal allocation

is unique and coincides with the diagonal assignment. Otherwise there are more

than one allocations with optimal cost. For example the allocations indicated by

stars:
















0 ⋆ ∞ ∞ ∞ ∞ 1 b b3 ⋆

∞ 0 ⋆ ∞ ∞ ∞ b b2 ⋆ b4

∞ ∞ 0 ⋆ ∞ ∞ b2 ⋆ b3 b5

∞ ∞ ∞ 0 ⋆ ∞ b3 b4 b6

∞ ∞ ∞ ∞ 0 ⋆ b4 b5 b7

















,

















0 ⋆ ∞ ∞ ∞ ∞ 1 b b3 ⋆

∞ 0 ⋆ ∞ ∞ ∞ b b2 b4

∞ ∞ 0 ⋆ ∞ ∞ b2 b3 ⋆ b5

∞ ∞ ∞ 0 ⋆ ∞ b3 ⋆ b4 b6

∞ ∞ ∞ ∞ 0 ⋆ b4 b5 b7

















both have the optimal cost b3.

We will now show the main technical lemma of the proof.

Lemma 20. Suppose that a truthful mechanism on T (i1, . . . , ik), does not allocate

all non-dummy tasks to the first player. Then we can find another instance for which

the approximation ratio is at least 1 + b.
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Proof. Fix a truthful mechanism and suppose that the first player does not get all

non-dummy tasks. In the first part, we manipulate the tasks in such a way that we

obtain an instance with at least one non-dummy task, whose allocation satisfies the

following properties:

• the first player gets no non-dummy task, and

• every other player gets at most one non-dummy task.

In the second part, we show that instances which satisfy the above two conditions,

can be changed to obtain an instance with approximation ratio at least 1 + b.

1st part: Suppose that the first of the above conditions is not satisfied. That is,

suppose that the first player gets some non-dummy task. We can then decrease its

value (for the first player) to 0. By the Monotonicity Property and in particular by

Lemma 4, the same set of tasks will be allocated to the first player, so he still does

not get all non-dummy tasks.

Suppose that the second condition is not satisfied, i.e., there is a player in

{2, . . . , n} who gets at least two tasks. We can then lower all the non-zero val-

ues allocated to this player to 0 except for one. By the Monotonicity Property and

in particular by Lemma 4, the same tasks will be allocated to the player. This

guarantees that the first player still does not get all non-dummy tasks.

By repeating the above operations, we decrease the number of non-dummy tasks.

We will end up with an instance that contains at least one non-dummy task and in

which the first player gets no non-dummy task and every other player will get at

most one non-dummy task.

Notice that the tasks whose value was changed to 0 remain part of the instance

but they will play no particular role in the induction. This is precisely the reason

for which we allowed T (i1, . . . , ik) to have additional tasks with at least one 0 entry.

2nd part: We can now assume that there is some T (i1, . . . , ik) with k ≥ 1 for

which the above two conditions are satisfied, i.e, the mechanism allocates no non-

dummy task to the first player and at most one non-dummy task to each of the

other players.

The optimal cost is bik . Our aim is to find a task, which is allocated to some

player j, with value at least bik+1; we will then increase player j’s dummy 0 value

Angelina Vidali 65



Game-theoretic analysis of networks

to bik . Then by Lemma 4, player j will get both tasks with total value at least

bik+1 + bik . If the optimal value is still bik , then the approximation ratio is at least

1+b. However, when we raise the dummy 0 to bik we may increase the optimal value.

The crux of the proof is that there is always an allocated value greater or equal to

bik+1 for which this bad case does not occur. To find such a value we consider two

cases:

Case 1: The algorithm assigns a task with value at least bik+1 to one of the last

n − k players. This is the easy case, because we can increase the dummy 0 value of

this player to bik without affecting the optimum. The reason is that we can allocate

the non-dummy tasks to the first k players with cost bik (see Remark 9).

Example 9. Consider the following instance with n = 5 and k = 3. Suppose that

the mechanism has the allocation indicated by the stars.

















0 ⋆ ∞ ∞ ∞ ∞ 1 b b3

∞ 0 ⋆ ∞ ∞ ∞ b b2 b4 ⋆

∞ ∞ 0 ⋆ ∞ ∞ b2 ⋆ b3 b5

∞ ∞ ∞ 0 ⋆ ∞ b3 b4 ⋆ b6

∞ ∞ ∞ ∞ 0 ⋆ b4 b5 b7

















Then we can raise the dummy 0 of the 4-th player to b3. This does not affect the

optimum (which is b3) but raises the cost of the 4-th player to b4 + b3.

Case 2: The value of all tasks assigned to the last n − k players is at most bik .

Consequently the indexes i1, i2, . . . , ik are not successive integers (Remark 9). Let q

be the length of the last block of successive indexes, i.e., k−q is the maximum index

where there is a gap in the sequence i1, i2, . . . , ik. More precisely, let k − q be the

maximum index for which ik−q +1 < ik−q+1. Since player 1 gets no non-dummy task,

there is a player p ∈ {q + 1, . . . , n} such that some of the last q tasks is allocated to

p. We raise the dummy 0 value of player p to bik .

We have to show two properties: Firstly that the value allocated to p was at least

bik+1 and secondly that the optimum cost is not affected. Indeed, the first property

follows from the fact that p > q (and by the observation that all values of the last q

tasks for the players in {q + 1, . . . , n} are at least bik+1). To show that the optimal

solution is not affected consider the optimal allocation which assigns

• the ℓ-th from the end non-dummy task to the ℓ-player, for ℓ < p
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• the ℓ-th from the end non-dummy task to the (ℓ + 1)-player, for ℓ ≥ p

Notice that this allocation assigns no non-dummy task to the p-th player, as it

should. The p-th player is allocated the dummy task, which was raised from 0 to

bik . Also, since there is a gap in position k − q, all allocated values are at most bik .

Example 10. Consider the following instance with n = 5, k = 3, and q = 2. Suppose

that the mechanism has the allocation indicated by the stars.

















0 ∗ ⋆ ∞ ∞ ∞ ∞ 1 b2 b3

∞ 0 ⋆ ∞ ∞ ∞ b b3 ⋆ b4

∞ ∞ 0 ⋆ ∞ ∞ b2 b4 b5 ⋆

∞ ∞ ∞ 0 ⋆ ∞ b3 ⋆ b5 b6

∞ ∞ ∞ ∞ 0 ⋆ b4 b6 b7

















Then p = 3, and we can raise the dummy 0 of the 3-rd player to b3. This does not

affect the optimum (which allocates the b3 values), but raises the cost of the 3-rd

player to b5 + b3 ≥ b4 + b3.

With the above lemma, we can easily prove the main result:

Proof of Theorem 16. Consider the instance

















0 ∞ · · · ∞ ∞ 1 b · · · bn−2

∞ 0 · · · ∞ ∞ b b2 · · · bn−1

. . .

∞ ∞ · · · 0 ∞ bn−2 bn−1 · · · b2n−4

∞ ∞ · · · ∞ 0 bn−1 bn · · · b2n−3

















.

By the previous lemma, either the approximation ratio is at least 1 + a or all non-

dummy tasks are allocated to the first player. In the latter case, we raise the dummy

0 of the 1-st player to bn−1. The optimal cost becomes bn−1 while the cost of the

first player is 1 + b + b2 + . . . + bn−1.

The approximation ratio is at least

min{1 +
1

b
+

1

b2
+ . . . +

1

bn−1
, b + 1}.
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We select b so that

1 +
1

b
+

1

b2
+ . . . +

1

bn−1
= 1 + b. (5.1)

For n → ∞, this gives

1

1 −
1

b

= 1 + b.

Thus b2 = 1 + b, and the solution to this equation is b = ϕ. So the approximation

ratio of any mechanism is at least 1+ϕ. For a fixed number of players n, the solution

of Equation 5.1 determines a lower bound for the approximation ratio. For small

values of n, the approximation ratio is less than 1 + ϕ but it converges to it rapidly,

as shown in Table 5.1.
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Characterization of 2-player

mechanisms

6.1 Introduction

6.1.1 Do we need the full power of a characterization to get

a lower bound?

Seeking a characterization is unrefutably a very natural and important question to

ask but can we not prove a lower bound for the problem without getting our hands

dirty with a characterization?

There are basically two directions one can follow for providing a lower bound for

this problem:

The first approach is to use, an appropriately selected, small subset of the input

instances. Fix one instance and consider all its possible allocations (providing a

finite approximation ratio). Then argue how each one of the possible allocations

results to approximation ratio at least r for some other instance from our chosen

set. This is possible because the Monotonicity Property gives a condition that should

be satisfied by any two instances of the problem and their corresponding allocations,

hence allows us to show how the allocation of one instance affects the allocation of

other instances. This approach had been already followed in [42, 17] using a finite

set of small instances of 2 and 3 machines respectively and no more than 5 tasks.

Another (more ambitious) approach is to provide a global characterization of
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all possible mechanisms, considering all possible inputs, which are infinitely many.

After this it is very easy to determine the mechanism with the best approxima-

tion ratio. This approach however solves a potentially more difficult problem. The

only characterization we know until now, came very recently. For the case of two

machines [24] Dobzinski and Sundararajan show that every finite approximation

mechanism is task-independent, while in the next section we provide a character-

ization of all (regardless of approximation ratio) decisive truthful mechanisms in

terms of affine minimizers and threshold mechanisms. Until now the only example

of a new lower bound obtained by a characterization is the lower bound of 2 for

instances with two (or more) tasks [18]. (It is however considerably easier to prove

the same lower bound for instances with 3 or more tasks [42] without employing a

characterization.)

The proof of the 1 + ϕ lower bound does not use a characterization, but in some

sense lies somewhere in-between these two different approaches in the sense that it

uses an infinite subset of the input and a sophisticated double induction to keep

track of how all these allocations depend from each other.

The discouraging thing is that, despite using infinitely more players and tasks,

the improvement on the lower bound achieved is very small. This might be consid-

ered as an indication that however difficult the characterization approach might be,

it is our only serious hope for proving the Conjecture by Nisan and Ronen [42].

6.1.2 What kind of characterization?

As we have already seen in Theorem 1 the allocation of the mechanism to player i

is given by the argmin expression ai = argmina{ai · ti − pi(ai, t−i)}. The allocations

to players must be consistent, i.e., every task is allocated to exactly one machine.

The question is what type of allocation algorithms and payment schemes satisfy this

property.

There is a simple answer to this question: A mechanism is truthful if and only

if it satisfies the Monotonicity Property. One nice property of this characterization

is that it does not involve the payments at all. Since we usually care about the

allocation part of mechanisms, this property focuses exactly on the interesting part.

Unfortunately, although this is a necessary and sufficient condition [46], it is not

very useful because it is a local and indirect property. The best way to clarify this
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point is to consider the case of mechanism design in unrestricted domains. In such

domains, the same monotonicity property characterizes the truthful mechanisms.

However, there is a much more direct characterization due to Roberts [30]: The

class of truthful mechanisms for the unrestricted domain is very limited and contains

exactly the class of affine maximizers. An important open problem is to come up with

a similar characterization for the scheduling problem and combinatorial auctions.

This work resolves this question for 2 players.

For the scheduling problem, very few mechanisms are known to be truthful. The

principal example is the VCG mechanism [47, 20, 25] (or second-price mechanism)

and its generalization, the affine minimizers [34]. The VCG mechanism allocates

each task independently to the machine with minimum value, and pays the machine

the second minimum value. VCG can be generalized in two ways and retain its

truthfulness.

The first generalization is the task-independent mechanisms, which allocate each

task independently of the rest. We know that there are some truthful mechanisms,

which are slightly more general; we call them threshold mechanisms: For each task

j and each player i, there are thresholds hij such that the player gets the task if

and only if the value tij is less than hij; the characterizing property of threshold

mechanisms is that the threshold depends on the values of the other players, oth-

erwise every mechanism can be expressed with thresholds (see Figure 6.1[c1 = 0]

for the geometric fingerprint of these mechanisms which partition the space with

orthogonal hyperplanes). For two players we show that the only threshold algo-

rithms are task-independent mechanisms, except for a countable number of inputs

(see Examples 15 and 16). For 3 or more players, this doesn’t hold and there exist

threshold mechanisms, which are far from being task-independent (see Example 11

or [24, subsection 4.3]).

The second generalization of the VCG is the affine minimizers. These can be

derived from the VCG in the following way: The VCG selects an allocation that

minimizes the sum of processing times, we alter this objective function by applying

a linear transformation, we multiply the value of each player by some constant, but

more importantly, we alter the value of each allocation by an additive constant. It

is this set of additive constants, one per allocation, which make this generalization

different than the first generalization.

Both these generalizations are known to be truthful, but they make very poor
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algorithms. (For example for the objective of minimizing the makespan, which is

the objective of the scheduling problem, we can show a lower bound of n for both of

these classes.) The reason is that they allocate each task independently, or almost

independently. The question is whether, the affine maximizers and the threshold

mechanisms exhaust the class of truthful mechanisms. The answer appears at first

to be negative: For example, the mechanism that allocates all tasks to one player,

the one with minimum sum of execution times, is truthful but it is neither affine

minimizer nor threshold. However, this negative answer is not satisfactory because

some allocations are never used, no matter how high or low are the values of the

players. (One of the undesired properties of these mechanisms is that they have

unbounded approximation ratio.) In contrast, we usually require that mechanisms

have a much stronger but very natural property: decisiveness. A mechanism is

called decisive when a player can enforce an outcome (allocation), by declaring

very high or very low values. In fact, for the scheduling problem, it makes more

sense to consider locally-decisive mechanisms: A player can enforce his allocation by

declaring very low or high values, but cannot determine how the remaining tasks are

allocated among the other players. When there are only two players, the notions of

decisiveness and local-decisiveness coincide, but for 3 or more players decisiveness is

a stronger property. We will restrict the discussion in this work to local-decisiveness.

In fact, for the case of two tasks our proofs still hold if we only assume decisiveness

for 3 allocations (in the sense that a mechanism is decisive for an allocation if

each one of the players can impose this allocation by changing his values while the

values of the other player remain fixed). This (as well as previous work on similar

characterizations [34, 30]) suggest that the right question is to characterize the

decisive truthful algorithms. Unfortunately, by restricting our interest to decisive

algorithms and positive values, we leave out important truthful specimens because

some affine minimizers are not decisive: in some cases, a task will not be allocated

to a player even when he declares 0 value for the task. To circumvent this problem,

we allow negative values and we characterize the decisive truthful mechanisms for

the domain of real values (both positive and negative) (this approach has been also

followed in [30]). These algorithms include the affine minimizers and the monotone

threshold algorithms; furthermore, every such algorithm is also truthful (but not

necessarily decisive) for the nonnegative domain. By allowing negative values, we

obtain not only a clean characterization but a useful one too, because we can still
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use it to argue about the approximation ratio for nonnegative values.

Our characterization leads us to conjecture:

Conjecture 1. For any number of players, a decisive truthful mechanism partitions

the tasks into groups. Each group of tasks is allocated by either an affine minimizer

or a threshold mechanism.

Here we show that the conjecture holds for 2 players (Theorem 1). If this turns

out to be true for more players, it will show that the class of truthful mechanisms

is limited to a few algorithms with poor performance. This will also apply directly

to richer domains, such as combinatorial auctions (the richer the domain the more

restrictive the class of truthful mechanisms). In fact, for 2 players our theorem is

stronger than the conjecture: in the statement of the conjecture, we can replace the

threshold mechanisms with the subclass of threshold mechanisms which are task-

independent mechanisms, except for countably many points.

Something we should note about the characterization is that each part is not

allocated independently of the rest, even for the case of 2 players. Namely the value

of a task allocated by an affine minimizer can appear like a “constant” in a threshold

mechanism that allocates another task. The following example, shows this for the

case of 3 or more players:

Example 11. Consider a mechanism with 3 players and 3 tasks, where the first 2

tasks are allocated by an affine minimizer, while the third task is allocated by a

threshold mechanism as follows: the task is given to the first player when he has

minimum value (t13 ≤ min{t23, t33}); otherwise it is given to the second player if

and only if t23 · t11 ≤ t33. Notice that the value t11 of the affine minimizer affects the

part of threshold mechanisms and more specifically it only affects which of players

2 and 3 gets the task (for these players the value t11 is irrelevant and it affects the

threshold mechanism in the same way a constant would affect the mechanism).

On a side note, when the affine minimizer in the above mechanism is the VCG

mechanism, we obtain an example of a truthful threshold mechanism, which is not

task-independent. (After understanding well Example 15 it becomes an easy exercise

to construct a similar example for the case of 2 players.)

Recall that for two regions Ra, Ra′ that share a common boundary

f i
a:a′(t−i) = pi(a

′
i, t−i) − pi(ai, t−i).
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For simplicity, we write fa:a′ in place of f 1
a:a′ .

Remark 10. In this chapter we also represent the allocations using only the allocation

of player 1, since the allocation of player 2 can be inferred. For example, we write

f00:10 for f 1
00:10, which is the difference in payments of player 1 when he gets only

task 1 and when he gets no task. There is an extra reason to define fa:a′ : at some

point in our proof, we will use the inverse function f−1
a:a′ . The superscript 2 in f 2

00:10

stands for the second player, mind however that in this chapter (unlike Chapters 2

and 3) the allocations of the subscript however are still allocations of the first player.

The corresponding allocations of player 2 can be obtained by changing the roles of

0 and 1.

Another reason for using negative values in our characterization is that the values

fa:a′ , being the differences of payments, can take negative values.

As we mentioned, the allocation of a mechanism can be expressed with argmin

expressions, one for every player: ai = argmina{ai · ti − pi(ai, t−i)}. For two players

and two tasks, we essentially seek the payments that satisfy the following equation,

which expresses the fact that the allocations for the two players must be consistent

(i.e. each task is allocated exactly once):

argmin{t11 + t12 − p1(11, t2), t11 − p1(10, t2), t12 − p1(01, t2),−p1(00, t2)} =

argmin{−p2(11, t1), t22 − p2(10, t1), t21 − p2(01, t1), t21 + t22 − p2(00, t1)}.

Therefore the problem of characterizing the argmin mechanisms for two players

and two tasks boils down to the following simple question: Which payments p satisfy

the above equation? This is precisely the problem that we are trying to solve here.

The following theorem provides the answer, which applies also to any number of

tasks.

We now state our main result:

Theorem 17. For the scheduling problem with real values every decisive truthful

mechanism for 2 players partitions the tasks into groups. Tasks in a group of size

at least two are allocated by an affine minimizer and tasks in singleton groups by

threshold mechanisms (which are task-independent except for a countable number of

inputs).

The allocation of two different groups is not entirely independent: The values

of the tasks in a group allocated by an affine minimizer can appear in the thresh-
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old mechanism for a different group of tasks, but only affecting the allocation of a

countable number of inputs. The affine minimizers cannot be affected by the values

of the tasks in a group allocated by a threshold mechanism.

In fact our characterization does not only hold for additive valuations (like those

of the scheduling domain) i.e. vi(11) = ti1 + ti2, vi(00) = 0 but also when the

valuations are of the form vi(11) = ωi(ti1 + ti2) + bi, vi(00) = 0, where ωi, bi are

constants. The reason for this is simple namely these valuations also satisfy the

Monotonicity Property and moreover the possible truthful mechanisms for such

valuations are like in Figure 6.1 (this would not be the case for valuations with

vi(11) = ti1 · ti2 or vi(11) = 2ti1 + ti2 as the sloped hyperplane would not be 45◦.)

6.2 The characterization of decisive mechanisms

for 2 tasks

Our main theorem is based on the following theorem which applies to 2 players and

2 tasks and which is the subject of this section.

Theorem 18. For the scheduling problem with real values the decisive truthful mech-

anisms for 2 players and 2 tasks are either threshold mechanisms or affine minimiz-

ers. The same characterization applies to mechanisms that are decisive for only

three outcomes.

6.2.1 Using a “fix and release” Characterization

For obtaining our characterization we use a new method which we will call a “fix and

release” Characterization. We believe that the application of this method might also

be of significant help for extending a characterization for the case of more players.

This essential part of the proof was missing from the first version of our paper [18].

The idea of this method is to start with the class of all possible mechanisms and then

apply a transformation that changes the boundaries of each mechanism in order to

make them more simple. This transformation substitutes some of the “irrelevant”

variables appearing in the mechanism with arbitrary constants. What we mean by

“irrelevant” variable is for example a variable of player 1 affecting which of players

2 and 3 gets a task but not the allocation of player 1 himself like in Example 11.
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Then we characterize the restricted class of mechanisms we obtained by applying the

transformation. Finally we examine how can the application, of the inverse of any

of the possible transformations, affect each one of the mechanisms we obtained from

our characterization. This means that we examine how these simple mechanisms

are affected if we decide to allow their boundaries to depend in any possible way by

“irrelevant variables”. The mechanisms we get then are exactly all possible truthful

mechanisms. This description seems at first glance too abstract and uncertain to

succeed but it becomes more plausible if you examine the following outline of the

proof. We proceed in our proof carefully, revealing gradually the properties of fa:a′ .

We assume here that the payments take real (positive or negative) values, so that

fa:a′ is also a real function.

Proof outline

Suppose that a, a′ are two allocations that differ only in one task (in what follows we

will deal with the case when they differ in the first task, the case when they differ

in the second task is analogous)

• The first step is to show that the function fa:a′ is nondecreasing with respect

to the variable that changes allocation.

• If fa:a′ is continuous as a function of t21, and a, a′ differ only in the first task

we have fa:a′(t21, t22) = fa:a′(t21, t
′
22) for all t22, t

′
22 ∈ R.

• Transform fa:a′ to a new function depending on a single variable by changing

its value at the discontinuities, so that it satisfies the preceding equality for

all points. (The function might still have discontinuities, but now only de-

pends on the value of the task that changes allocation.) We show that this

transformation is applied to at most countably many points, because the func-

tions fa:a′ are nondecreasing and consequently have at most countably many

discontinuities.

• Then we can prove that a mechanism with payments of this form is either an

affine minimizer or a task-independent mechanism.

• We have to apply the inverse transformation to get all possible mechanisms.

This means that we have to change back the payments of the mechanism
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types involved in our characterization wherever these are discontinuous and

allow them to be affected by the variable that does not change allocation in

any possible way (as long as the Monotonicity Property is still satisfied).

• It turns out that by performing the last step the affine minimizers remain

intact, while for some of the task-independent mechanisms this transformation

allows the variable that does not change allocation (here t22) to affect the

mechanism and they become threshold mechanisms, but only for countably

many points.

The first step is to show, by means of the Monotonicity Property, that the boundaries

between regions that differ only in one task are nondecreasing as functions on the

variable that changes allocation (i.e. if we keep the other variable fixed).

Lemma 21. For a, a′ that differ only on one task, the function fa:a′(t2) is nonde-

creasing with respect to the variable (a′− a) · t2, when the other variable of the same

player, (a′ − a − 1) · t2, is fixed.

For example this means that the function f00:10(·, t22) is nondecreasing. The · at

the position of t21 means that we regard f00:10 as a function of t21 for fixed t22.

Proof. By symmetry, it suffices to establish the lemma only for the function f00:10.

Suppose towards a contradiction that it is decreasing for fixed t22. Then there are

t21, t′21 with t21 < t′21 and f00:10(t21, t22) > f00:10(t
′
21, t22). The first of the follow-

ing instances should have the indicated allocation because
f00:10(t21,t22)+f00:10(t′21,t22)

2
<

f00:10(t21, t22), and applying the Monotonicity Property (for player 2) we get the

allocation of the second instance.
(

f00:10(t21,t22)+f00:10(t′21,t22)

2
⋆ ∞

t21 t22 ⋆

)

→
(

f00:10(t21,t22)+f00:10(t′
21

,t22)

2
⋆ ∞

t21 + ǫ t22 − ǫ ⋆

)

.

Similarly, the instances

(

f00:10(t21,t22)+f00:10(t′21,t22)

2
∞

t′21 ⋆ t22 ⋆

)

→
(

f00:10(t21,t22)+f00:10(t′21,t22)

2
∞

t21 + ǫ ⋆ t22 − ǫ ⋆

)

should have the indicated allocation, since for sufficiently small ǫ > 0, t21 + ǫ < t′21.

This is a contradiction as one instance cannot have two allocations.
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6.2.2 Characterization of mechanisms with simple bound-

aries.

We will first characterize mechanisms with functions fa:a′ , (for allocations a, a′ that

differ only in one task,) that are univariate (depending only on the value of the task

that changes allocation).

Property 1 (Univariate Boundaries). We will say that a mechanism satisfies the

Univariate Boundaries Property, if for every pair of allocations a, a′ that differ only

on one task, fa:a′ is a univariate function, depending on the value of the task that

changes allocation. That is fa:a′(t21, t22) = g((a′−a)·t2) for some function g : R → R.

For simplicity, we will write fa:a′((a′ − a) · t2) instead of g((a′ − a) · t2).
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f (t )00:01 21

Figure 6.1: There are three ways a truthful mechanism can partition the input space

of player 1 for fixed t2, according to the sign of c1. For c1 = 0 you can see that there

is a threshold hj(t2j) for each task j.

Corollary 1. The quantities c1 = f01:11(t2)−f00:10(t2) and c2 = f 2
10:00(t2)−f 2

11:01(t2)

do not depend on t2.

Proof. First observe that the following equality

f01:11(t2) − f00:10(t2) = f10:11(t2) − f00:01(t2),

follows directly from the definitions because both parts are equal to p1(11, t2) −
p1(01, t2)−p1(10, t2)+p1(00, t2). The above lemma states that f01:11(t2) and f00:10(t2)
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depend only on t21. Consequently the left part of the above equality depends only on

t21. Similarly the right part of the above equality depends only on t22. Therefore,

both differences are constant (independent of t2). We denote this constant by c1

(the 1 stands for player 1), and we define, in a similar way, a constant c2 for player

2.

We can now define the regions of truthful mechanisms. For fixed t2, let R11

denote the set of values t1 for which the mechanism allocates both tasks to player

1. Region R11 which is defined by the following constraints:

t11 < f01:11(t21)

t12 < f10:11(t22)

t11 + t12 < f01:11(t21) + f00:01(t22).

Similarly, the inequalities for region R00 are

t11 > f00:10(t21)

t12 > f00:01(t22)

t11 + t12 > f01:11(t21) + f00:01(t22).

There are similar constraints that define the other two regions R10 and R01. What

happens at the boundaries, where the inequality becomes an equality is not deter-

mined by the Monotonicity Property. These undetermined values are a major source

of difficulty in the characterization of the mechanisms.

From the above inequalities we get that the boundary between regions R00 and

R11, if it exists, is of the form t11 + t12 = f01:11(t21) + f00:10(t22). Since a similar

constraint holds for player 2 (in which the sum t21 + t22 appears), one could be

tempted to conclude that the boundary between allocations 00 and 11 is of the form

t11 + t12 = h(t21 + t22) for some function h. Although this conclusion is exactly

the one that we will eventually reach, the above argument is fallacious : There is no

justification to identify the boundary between regions R00 and R11 for the first player

when t2 is fixed and the boundary between the same regions for the second player

when t1 is fixed. In fact, we don’t even know that the boundary is some surface

when we consider the 4-dimensional space of t. We tried many shortcuts in our

proof but we couldn’t make them rigorous. This in part is reflected in the writing
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of the proof, in which we proceed carefully and use elementary and straightforward

arguments.

To proceed to the characterization of mechanisms, we need to understand the

functions f00:10 and f00:01. We have already showed in Lemma 21 that they are

non-decreasing.

For most reasonable mechanisms, a stronger statement seems to apply for these

two functions: that they are strictly increasing. This however is not generally true

as the following example shows.

Example 12 (Task-independent mechanism but not-strictly increasing). Consider

the task-independent mechanism with

f01:11(t21) =



















t21 t21 ≤ 1

1 1 ≤ t21 ≤ 2

t21 − 1 2 ≤ t21

and f00:01(t22) = t22. The interesting property of this mechanism is that the function

f01:11(t21) is not strictly increasing.

But we can show that the functions f01:11 and f00:01 are indeed strictly increasing

when c1 6= 0. In fact, we show in the next lemma that either the functions are

strictly increasing or they are like the following mechanism, which is not a decisive

mechanism.

Example 13 (Mechanism with some oblivious player). Consider the mechanism with

f00:10(t21) = b1, f00:01(t22) = b2 where b1, b2, and c1 are constants. In this mechanism

the first player decides independently of the values of the second player. For given

values t1 of the first player, the second player has the same allocation for every t2.

This mechanism is not decisive, since the second player cannot force all allocations.

Lemma 22. In a truthful mechanism with c1 6= 0 the functions f01:11 and f00:01 are

either both strictly increasing or both constant. (The same holds for the pair f00:10

and f10:11.)

Proof. We will prove the lemma for c1 > 0 since the case c1 < 0 is very similar. We

Angelina Vidali 80



Game-theoretic analysis of networks
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Figure 6.2: The points we use to prove Lemma 22

will show that there are no t21, t22, 0 < δ2 < δ1 such that

f01:11(t21) = f01:11(t21 + δ1)

f00:01(t22) < f00:01(t22 + δ2)

Before we prove this, we show that it implies the lemma. Indeed, if some of the

functions f01:11 and f00:01 is not strictly increasing, say the function f01:11, then it

is somewhere constant, as we have already established in Lemma 21 that it is non-

decreasing. Therefore there are t21 and δ1 > 0 with f01:11(t21) = f01:11(t21 + δ1). But

then for every δ2 < δ1, we must have f00:01(t22) = f00:01(t22 + δ2). It follows that

f00:01 is constant. This in turn (with similar reasoning) implies that f10:11 is also

constant.

We now return to the proof of the above statement. Towards a contradiction we

assume that there is such a mechanism with c1 > 0. For 0 < ǫ < c1/2 we consider

the inputs (see Figure 6.2)
(

f01:11(t21) − ǫ ⋆ f00:01(t22)+f00:01(t22+δ2)
2

+ ǫ ⋆

t21 t22 + δ2

)

and
(

f01:11(t21) − ǫ f00:01(t22)+f00:01(t22+δ2)
2

+ ǫ

t21 + δ1 ⋆ t22 ⋆

)

The claim is that the mechanism will allocate the tasks as indicated by the stars,

i. e., both tasks to the first player in the first input and both tasks to the second
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player in the second input. Indeed, it is easy to verify that the first input satisfies

the inequalities that define R11 and the second input satisfies the inequalities that

define R00.

But these allocations contradict the Monotonicity Property for player 2. The

inputs are identical for the first player while for the second player the sum of the

values are t21 + t22 + δ2 and t21 + t22 + δ1. Since we assumed that δ2 < δ1, the sum of

the values of the second player in the first input is less than the sum in the second

input. The allocations clearly violate the Monotonicity Property.

The above lemma establishes that the mechanisms with c1 6= 0 are either one

of the mechanisms of the Example 13 or both functions f01:11 and f00:01 are strictly

increasing. As we consider decisive mechanisms, from now on we will consider only

strictly increasing functions.

Lemma 23. If c2 6= 0 then the functions f01:11 and f00:01 are bijections from R to

R.

Proof. (Recall that the superscript 2 in f 2
00:10 stands for the second player. By

definition, the allocations of the subscript however are still allocations of the first

player. The corresponding allocations of player 2 can be obtained by changing the

roles of 0 and 1.) We want to establish that the functions f00:10, f
2
10:00 are inverse.

We use the assumption c2 6= 0 only to guarantee that f 2
10:00 is strictly increasing.

From the definitions of the function, we get the following implications:

t11 < f00:10(t21) ⇒ f 2
10:00(t11) ≤ t21

t11 > f00:10(t21) ⇒ f 2
10:00(t11) ≥ t21

The claim is that the above conditions imply that the two functions are inverse.

Assume towards a contradiction that for some t11 we have f00:10(f
2
10:00(t11)) = t′11

with t′11 > t11 (the other case, t′11 < t11, is similar). Then (t11+t′11)/2 > t11, which by

the strictly increasing property of f 2
10:00 implies that f 2

10:00((t11 +t′11)/2) > f00:10(t11).

On the other hand, (t11 + t′11)/2 < t′11 = f00:10(f
2
10:00(t11)) which by the above

implications gives f 2
01:11((t11 + t′11)/2) ≤ f 2

01:11(t11), a contradiction.

The assumption c2 6= 0 is essential in the above lemma. When c2 = 0, there are

mechanisms in which f00:10 and f00:01 are not bijections; for example, the mechanism

of the following example.
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Example 14 (Non-decisive task-independent mechanism). Consider the mechanism

with f00:10(t21) = et21 , f00:01(t22) = et22 , and c1 = c2 = 0. This is a task-independent

mechanism which is not decisive; the allocation cannot be expressed as argmin for

both players.

Lemma 24. The constants c1 and c2 are either both positive, both negative, or both

0.

Proof. It suffices to show that if c1 > 0 then it follows that c2 > 0. Consider the

tasks
(

f01:11(t21) − ǫ ⋆ f00:01(t22) + 2ǫ/3 ⋆

t21 t22

) (

f01:11(t21) f00:01(t22) + ǫ/3

t21 ⋆ t22 ⋆

)

It is straightforward to check the indicated allocations (for c1 > ǫ > 0).

f ( )
01:11 t21

f (t )00:0 221

t11

t12

11
00

00
11

10
01

01
10

Figure 6.3: The points we take for Lemma 24

Let’s denote the above values as: t12 = f00:01(t22)+2ǫ/3 and t′12 = f00:01(t22)+ǫ/3.

Now, if c2 ≤ 0, we should have that t22 ≥ f 2
11:10(t12) and t22 ≤ f 2

11:10(t
′
12) + c2.

(Consider the situation player 2 faces when the values of player 1 are fixed to t1

and t′1.) But since t12 > t′12 and since f 2
11:10 is strictly increasing (as the inverse of a

strictly increasing function) this leads to a contradiction when c2 ≤ 0.

We now strengthen the characterization of f00:10 and f00:01 in the case when

c1 6= 0.
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Lemma 25. For c1 6= 0, the functions f00:10 and f00:01 are semiperiodic and in

particular they satisfy

f00:10(t21 + c2) = f00:10(t21) + c1

and

f00:01(t22 + c2) = f00:01(t22) + c1.

Proof. Again by symmetry we need only to establish the lemma for f00:10.

Notice first that f01:11 is a bijection, for the same reasons that f00:10 is a bijection.

We also know that

f01:11(t21) = f00:10(t21) + c1.

The associated equation for player 2 is

f−1
00:10(t11) = f−1

01:11(t11) + c2.

We therefore have

f00:10(t21) + c1 = f00:10(f
−1
00:10(f00:10(t21) + c1))

= f00:10(f
−1
01:11(f00:10(t21) + c1) + c2)

= f00:10(f
−1
01:11(f01:11(t21)) + c2)

= f00:10(t21 + c2)

The first equality is based on the trivial fact that t11 = f00:10(f
−1
00:10(t11)). Simi-

larly for the last equality. The second and third equalities follow from the above

mentioned equalities for player 2 and player 1.

We will focus on the case of c1 > 0 as the case c1 < 0 is very similar. Consider

the diagonal boundary between the regions R11 and R00. This boundary is on the

line t11+t12 = f01:11(t21)+f00:01(t22). We have f00:11(t21, t22) = f01:11(t21)+f00:01(t22).

The heart of the characterization is that the function f00:11(t21, t22) depends only on

the sum of t21 + t22.

Lemma 26. The function f00:11(t21, t22) = f01:11(t21) + f00:01(t22) depends only on

t21 + t22, i. e., there is some function h such that f00:11(t21, t22) = h(t21 + t22).
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Proof. Suppose not. That is suppose that there are t2 and t′2 such that t21 + t22 =

t′21 + t′22 and yet f00:11(t21, t22) < f00:11(t
′
21, t

′
22). If the values differ, they have to

differ for some t21 and t′21 that are very close.

Without loss of generality then we assume that t21 < t′21 < t21 + c2.

This implies that t′22 < t22 < t22′ + c2 and therefore

f00:01(t22) < f00:01(t
′
22 + c2) = f00:01(t

′
22) + c1.

Let ǫ be a positive parameter with ǫ < f00:11(t
′
21, t

′
22) − f00:11(t21, t22) and ǫ <

f01:11(t
′
22) − f00:01(t22). By the above inequalities, ǫ belongs to an open interval and

more specifically it can take at least two distinct values. Consider then the values

t11 = f01:11(t21)

t12 = f00:01(t22) + ǫ

f ( )
01:11 21t

f (t ’)00:01 22

t11

t12

11
00

00
11

10
01

01
10

f (t )00:01 22

f ( )
1101: 21t ’

t21

t22

11
00

00
11

10
01

01
10

Figure 6.4: The point we use to prove Lemma 26 for player 1 and for player 2.

We can easily verify that the following inputs satisfy the boundary constraints

of the appropriate regions (R00 and R11) and have the indicated allocations:
(

t11 t12

t21 ⋆ t22 ⋆

) (

t11 ⋆ t12 ⋆

t′21 t′22

)

This means that, when we fix t1, the points t2 and t′2 are on the boundary between

regions R11 and R00 of player 2. Equivalently, that

t21 + t22 = f−1
01:11(t11) + f−1

00:01(t12 − ǫ).
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(A similar equation holds for t′2 which however is not different since we assumed that

t21 + t22 = t′21 + t′22). This equality should hold for every ǫ in some open interval.

But this contradicts the fact that f−1
00:01 is strictly increasing.

From the last lemma, we get that h(t21 + t22) = f01:11(t21)+ f00:01(t22). We claim

that the functions involved are affine as the following lemma shows.

Lemma 27. If for some real functions h, h1, h2 which are continuous at some point,

we have h(x + y) = h1(x) + h2(y), then all three functions are affine, i. e., they are

of the form ax + b for some constants a and b.

Proof. Let g(x) = h(x)−h1(0)−h2(0). We can easily verify that g(x + y) = g(x) +

g(y). But this is the Cauchy functional equation. Its only solution is g(x) = ax,

from which the proof of the lemma follows.

We have established that the functions f01:11 and f00:01 are affine but we can say

more about their coefficients:

Lemma 28. When c1 6= 0, there are constants λ > 0 and γa such that

f01:11 = λt21 + γ01 − γ11,

f00:01 = λt22 + γ00 − γ01,

f00:11 = λ(t21 + t22) + γ00 − γ11, for c1 > 0,

f01:10 = λ(t21 − t22) + γ01 − γ10, for c1 < 0.

Moreover λ = c1
c2

.

Proof. The three functions have the same multiplicative constant λ because f00:11(t21+

t22) = f01:11(t21) + f00:01(t22) and all three functions are linear. It follows that

f01:11(t21) = λt21+β for some constant β. We can rewrite the constant β as γ01−γ11.

Similarly for the other functions.

The fact that λ = c1
c2

follows directly from the linearity and the semiperiodicity

of the functions. For example, since f01:11(t21 + c2) = f01:11(t21) + c1 and f01:11 is

linear it follows that f01:11(t21) = c1
c2

t21 + β.

From this and the fact that c1 and c2 have the same sign, we get:
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Lemma 29. When c1 6= 0, the payments of the first player (up to a common additive

term which depends on t2) are of the form p1(a1, t2) = −λ · a2 · t2 − γa, for some

constants λ > 0 and γa.

With the above payments, the mechanism is the following affine minimizer:

argmin
a

{a1 · t1 + λ · a2 · t2 + γa}.

6.2.3 Continuous boundaries can only be univariate func-

tions

Definition 31. (a) We say that a function has a removable discontinuity at a point

if the one-sided limits of the function at this point are equal to each other (but

different than the value of the function).

(b) We say that a function has a jump discontinuity at a point if the one-sided

limits of the function at this point exist but are different from each other.

It is obvious the discontinuities of a non-decreasing function are all jump-discontinuities.

The following Lemma shows that if the value of the function f 2
a:a′ of player 2 is equal

to a constant c for all t21 in some open interval (a, b), then the corresponding func-

tion fa:a′ of player 1 has a discontinuity at point (c, t22) for every t22. This Lemma

becomes more clear if you look at Figure 6.2.3.

Lemma 30. If the function f 2
10:00(·,∞) has constant value, say c, for all t11 ∈ (a, b),

then f00:10(·, t22) has a jump discontinuity at the point t21 = c. (Here ∞ denotes a

sufficiently large value of t12 so that a12 = 0.)

Similarly for the other boundaries between allocations that differ in only one task.

Proof. The idea of the proof is that if we know the boundaries of the region with

assignment 11 for player 1 that this gives a region where player 2 has assignment

00.

Suppose there exists an interval (a, b), such that for t11 ∈ (a, b) and fixed suffi-

ciently large t12 the value of the function f 2
10:00(t11,∞) is a constant, say c. Then

for t21 < c, a < t11 < b, t12 = ∞ the assignment (of player 1) is 00. Consequently for

any fixed t2 with t21 < c the assignment (of player 1) is 00 for a < t11 < b, t12 = ∞,
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f (t )00:10 21

t21

f (t )
2

00:10 11

t11

player 1 player 2

c

ca

b

a b

Figure 6.5: If the function of player 1 has a jump discontinuity then the correspond-

ing function of player 2 is somewhere constant

and as the allocation mechanism is monotone, this means that f00:10(t21, t22) ≤ a for

t21 < c.

Similarly for t21 > c, a < t11 < b, t12 = ∞ the assignment (of player 1) is 10.

Consequently for fixed t2, with t21 > c we have that f00:10(t21, t22) ≥ b. Since a 6= b

this shows that for all t22, f00:10(·, t22) has a jump discontinuity at t21 = c.

Lemma 31. Take allocations a and a′ that differ only in the first task and consider

fa:a′ as a function of the value t21 of the task that changes allocation. If fa:a′(·, t22)
is continuous at some point t21, then fa:a′(t21, t22) = fa:a′(t21, t

′
22) for all t22, t

′
22 ∈ R.

(An equivalent lemma applies for allocations that differ only on the second task.)

Consequently the quantity fa:a′(t2) depends only on (a − a′) · t2 (and therefore it

depends on only one variable).

Proof. This lemma holds for every number of tasks. We will first prove the lemma

for m = 2 tasks. We will focus on the case of a = 00 and a′ = 10 since the other

cases are very similar.

We will show by contradiction that f00:10(t21, t22) does not depend on t22. Suppose

that there are t21, t22, and t′22 with t22 6= t′22 with f00:10(t21, t22) < f00:10(t21, t
′
22).

From the definition of f00:10(t21, t22), the tasks of the form

(

f00:10(t21, t22) + ǫ ∞
t21 ⋆ t22 ⋆

)
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have the indicated allocation for every ǫ > 0, where ∞ indicates an arbitrarily high

value which guarantees that the second task will not be allocated to player 1 (i.e.,

∞ is greater than max{f00:01(t2), f00:11(t2)}).
Similarly, the tasks of the form

(

f00:10(t21, t
′
22) − ǫ ⋆ ∞

t21 t′22 ⋆

)

have the indicated allocation for every ǫ > 0. As we mentioned before, ∞ denotes an

arbitrarily high value. We assume of course that the two occurrences of this symbol

above denote the same value.

Applying the Monotonicity Property for player 1 we get that for any t11 ∈
(f00:10(t21, t22) + ǫ, f00:10(t21, t

′
22) − ǫ) the tasks of the form

(

t11 ∞
t21 ⋆ t22 ⋆

)

,

(

t11 ⋆ ∞
t21 t′22 ⋆

)

have the indicated allocations.

What follows reveals a very subtle difficulty that arises in the proof of this

Lemma. This is the only point where we need the assumption that f00:10 has no jump

discontinuities. We would like to decrease the values of t22 and t′22 to min{t22, t′22},
and to claim that the allocations remain the same. This is true if player 2 is in

the interior of a region, but can be false if he is on a boundary. So we choose t11

so that f 2
10:00(t11,∞) 6= t21. We can find such a t11 because supposing, towards

a contradiction, that f 2
10:00(t11,∞) has fixed value t21 for t11 in the open interval

(f00:10(t21, t22)+ ǫ, f00:10(t21, t
′
22)− ǫ) then by Lemma 30 f00:10(·, t22) is discontinuous

at the point t21 contradicting our initial assumption. Consequently when the values

of player 1 are fixed to (t11,∞) player 2 is not on the boundary, he is in the interior

of a region, which means that the Monotonicity Condition cannot hold with equal-

ity. Consequently when we decrease the values of t22 and t′22 to min{t22, t′22}, the

allocations remain the same.

This leads to a contradiction because the task
(

t11 ∞
t21 min{t22, t′22}

)

would have two allocations.
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The proof can be extended to the case of m > 2 tasks: We reduce it to the m = 2

case by fixing all tasks except of two. For example, for every t2 = (t21, t22, t23) and

t′2 = (t21, t
′
22, t

′
23) we have: f000:100(t21, t22, t23) = f000:100(t21, t

′
22, t23) = f000:100(t21, t

′
22, t

′
23).

6.2.4 Extending the characterization to non-continuous func-

tions

Lemma 31 shows that if fa:a′ is continuous with respect to the variable that changes

allocation, then it is a univariate function, but what if fa:a′ is discontinuous?

In fact there exist decisive mechanisms, even with non-infinite approximation

ratio, whose boundaries are discontinuous. We give an example of a (threshold)

mechanism with boundaries that do not satisfy the conclusion of Lemma 31 and

hence also depend on the variable that does not change allocation.

Example 15. Let

f01:11(t21, t22) =



























t21 t21 < 1

1 t21 = 1, t22 ≥ 7

2 t21 = 1, t22 < 7

t21 + 1 t21 > 1

then the corresponding boundary of player 2 is

f 2
11:01(t11) =



















t11 t11 < 1

1 1 ≤ t11 ≤ 2

t11 − 1 t11 > 2

Letting f01:11(t21, t22) = f00:10(t21, t22) and f10:11(t22) = f00:01(t22) = t22 we get a

threshold mechanism.

We can generalize this idea to construct a function with an infinite (though

countable) number of discontinuities and get a more interesting threshold mechanism

that still has non-infinite approximation ratio:
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t21

player 2

t22

1<t <211

t =t21 11

7

1

11
00

01
10

00
11

10
01

t11

player 1

t12

t <722

t =11 t21

1

11
00

01
10

00
11

10
01

2

t =1,21

Figure 6.6: The situation in Example 15. Looking at player 2 the allocation cannot

be the same along the boundary for getting or not task 1. Notice that the points in

the shaded region of player 1 should all have the same allocation for t21 = 1, which

means that for 1 < t11 < 2 and t21 = 1 player 1 is not on a boundary while player 2

is on a boundary.

Example 16. Let

f01:11(t21, t22) =



























t21 if t21 < 1

t21 + i if i < t21 < i + 1 for i ∈ N
∗

2i if t21 = i, i ∈ N
∗ and t22 prime

2i − 1 if t21 = i, i ∈ N
∗ and t22 non-prime

Letting f01:11(t21, t22) = f00:10(t21, t22) and f10:11(t22) = f00:01(t22) = t22 we get a

threshold mechanism which is not task-independent for an infinite number of inputs,

namely for all natural numbers.

However it turns out that thanks to the following classical result in calculus, the

discontinuities are few, countably many, so that the conclusion of Lemma 31 holds

“almost all of the time”.

Theorem 19. A nondecreasing function cannot have more than countably many

discontinuities.

Consequently fa:a′(t2), which is non-decreasing can have at most countably many

discontinuities as a function of the variable (a′ − a) · t2 and fixed value of the other
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f (t )01:11 21,t22

t21

player 1

1    2   3    4

1
  
  
2
  
 3

  
  
4
  
  
5
  
 6

t21

player 1

1    2   3    4

1
  
  
2
  
 3

  
  
4
  
  
5
  
 6

f (t t )01:11 21, 22

Figure 6.7: The function we define in Example 16 for prime t22 is on the left and

for non-prime t22 is on the right.

variable. Combining the previous theorem with Lemma 31 we get the following

Corollary.

Corollary 2. For allocations a and a′ that differ only in the first task, fa:a′(t21, t22) 6=
fa:a′(t21, t

′
22) only for countably many points t21.

Remark 11. Unfortunately for three players there exist threshold mechanisms that

are not task-independent for more than countably many inputs.

6.2.5 Transforming fa:a′ to a univariate function f ′
a:a′.

Consider all fa:a′ between allocations a, a′ that differ in only one task. We will do the

transformation for f00:10 since the transformation for the other functions is similar.

If f00:10(·, t21) has a jump discontinuity at a point t21 and f00:10(t21, t22) depends on

t22 we “change” f00:10 to an f ′
00:10 that satisfies f ′

00:10(t21, t22) = f ′
00:10(t21, t

′
22) for all

t22, t
′
22 ∈ R i.e. we do not allow the dependence on the variable that does not change

allocation (here t22).

Since f00:10 can only have countably many discontinuities as a function of t21

f00:10(t21, t22) 6= f00:10(t21, t
′
22) only for countably many points t21, i.e. there exists a

function g : R → R such that f00:10(t21, t22) = g(t21) except for a countable set D

of values for t11, which are all jump discontinuities for g. We define a new function

f ′
00:10 with
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f ′
00:10(b, t22) =







limt21→b− g(t21) for all b ∈ D

g(b) else.

(In fact we could alternatively set the value of the function at the discontinuity to any

fixed value between limt21→b− g(t21) and limt21→b+ g(t21), it just has to be the same

value for all t22.) Applying this transformation to all boundaries between regions

that differ only in one task and defining the rest of the boundaries f ′
11:00, f

′
01:10 in

the natural way, i.e. f ′
00:11 := f ′

00:01 + f ′
01:11 and f ′

01:10 := −f ′
00:10 + f ′

00:10 we get a

new mechanism that satisfies the Univariate Boundaries Property and monotonicity.

Consequently applying the characterization we obtained in Section 6.2.2 holds and

this mechanism is either an affine minimizer or a threshold mechanism.

6.2.6 Applying the inverse transformation

Starting from the class of all truthful mechanisms and using only the property that

some of their boundaries are non-decreasing we applied a transformation that maps

this class to the class of truthful mechanisms satisfying the “Univariate Boundaries

Property”. We managed to characterize this class, so we know the exact form of the

boundary functions f ′
a:a′ . Which could have been the original class of all truthful

mechanisms?

Proof of Theorem 18. Our transformation changed the value of fa:a′ only at jump

discontinuities. But it is easy to observe that fa:a′ has a jump discontinuity if and

only if f ′
a:a′ has a jump discontinuity. So the inverse transformation that gives all

possible mechanisms alters f ′
a:a′ only at jump discontinuities, allowing the function

to depend in any possible way on the variable that does not change allocation, but

only at the points where fa:a′ is discontinuous.

Starting from an affine minimizer or a task-independent mechanism we will

now change back countably many points and show that the mechanism becomes

either an affine minimizer or a threshold mechanism.

Affine minimizer: All functions f ′
a:a′ are strictly increasing linear functions

and consequently f ′
a:a′ has no discontinuities. That is applying the inverse of our

transformation leaves an affine minimizer intact.

Angelina Vidali 93



Game-theoretic analysis of networks

Task-independent mechanism: Suppose f ′
01:11 is discontinuous at a point

t21 = b and e1 = limt21→a− f ′
01:11(t21) = f ′

01:11(b) < limt21→a+ f ′
01:11(t21) = e4.

Which can be f01:11 given f ′
01:11? As f01:11 is non-decreasing we have e1 ≤

f01:11(b, t22) ≤ e4. Then for each different value of t22 we can have a different value

of f01:11(b, t22). Suppose that after applying the inverse transformation f01:11(b, t22)

takes two distinct values e1, e2 such that e1 < e2 < e3 < e4 for t22 = d and t22 = d′

respectively, then

f01:11(t21, t22) =



















































. . .

e1 for t21 = b − ǫ

e2 for t21 = b, t22 = d

e3 for t21 = b, t22 = d′

e4 for t21 = b + ǫ

. . .

.

(Here we should be cautious to take sufficiently small d, d′ so that a22 = 1.) Going

now to the picture of player 2 (for fixed t1) we see that any dependence of f01:11 on

the values of t22 can only affect the allocation across the hyperplane t21 = b, which

is one of the boundaries of the mechanism for player 2 (when the values t1 of player

1 are fixed). This does not violate the Monotonicity Property.

More specifically for any fixed t1 = (t11, t12) satisfying e2 < t11 < e3 we have that

t21 = b is a boundary hyperplane as

• for t21 = b − ǫ (and sufficiently small t22) the assignment of player 2 is 11, (as

t11 > f01:11(b − ǫ, t22) = e1)

• for t21 = b the point (b, d) has assignment 01 and the point (b, d′) has assign-

ment 11, (as t11 > f01:11(b, d) = e2 and t11 < f01:11(b, d
′) = e3)

• for t21 = b + ǫ (and sufficiently small t22) the assignment is 01 (t11 < f01:11(b +

ǫ, t22) = e4).

Observe that for any two different points on the line t21 = b the Monotonicity

Property is satisfied with equality.

On the other hand if t11 does not satisfy e2 < t11 < e3, it is easy to see that

the points (b, d) and (b, d′) are on the same side of the boundary t11 = f01:11(t−1)
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and consequently both have the same assignment, so truthfulness cannot be vio-

lated. (Example 15 is a special case of this proof, and perhaps also the best way to

understand this proof.)

Consequently applying this transformation to a task-independent we get a thresh-

old mechanism. Actually the mechanism is task-independent except for countably

many points for which it is a threshold mechanism.

6.3 The case of many tasks

The generalization of the characterization to more than two tasks is almost straight-

forward. Fix a truthful mechanism. For two distinct tasks j1 and j2 we will write

j1 ∼ j2 when there are some values for the other m − 2 tasks such that the mech-

anism restricted to tasks j1 and j2 is an affine minimizer (i.e., with the associated

constant c1 6= 0). It should be stressed that we require the mechanism restricted

to these two tasks to be an affine minimizer for some values of the other tasks, not

necessarily for all values, but we are going to see that the two are equivalent.

Our aim is to show that the relation ∼ is transitive; since it is clearly symmetric,

it essentially partitions the tasks into equivalence classes with the exception that

classes of size one are not affine minimizer but task-independent mechanisms. As-

sume that j1 ∼ j2 and j2 ∼ j3. That is, assume that when we fix some values of the

other tasks, the mechanism for tasks j1 and j2 is an affine minimizer and when we

fix some (not necessarily the same) values of the other tasks the mechanism for tasks

j2 and j3 is also an affine minimizer, not necessarily with the consistent coefficients.

Our aim is to show that the coefficients are consistent. We start with the case of

two tasks and then we generalize.

Lemma 32. When j1 ∼ j2, the payments of player 1 satisfy the following for allo-

cations a and b that agree on all other tasks (i.e., tasks not in {j1, j2}):

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b,

where λj1,j2 > 0 and ζa:b are constants.

Proof. For each task j not in {j1, j2} we consider inputs with t1j = ∞ or t1j = −∞
if aj = 0 or aj = 1, respectively. These inputs have allocations that agree with a
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and b on tasks not in {j1, j2}. For a fixed value then of the tasks not in {j1, j2}, the

mechanism allocates tasks j1 and j2 with an affine minimizer. We therefore have

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b,

where λj1,j2 > 0 and ζa:b may depend only on the values of the other tasks.

The crucial observation is that when a and b differ in only one task these are

constants (and do not depend on other tasks). It remains to show that this also

holds when a and b differ on both tasks. However, if a′ is the allocation which differs

from a on task j1, we have that

pa(t2) − pa′(t2) = λj1,j2 · (a − a′)t2 + ζa:a′

pa′(t2) − pb(t2) = λj1,j2 · (a′ − b)t2 + ζa′:b,

from which we get that ζa:b = ζa:a′ + ζa′:b is also constant since it is equal to the sum

of two constants.

We now generalize this lemma to many tasks.

Lemma 33. When j1 ∼ j2, j2 ∼ j3, . . . , jk−1 ∼ jk, the payments of player 1

satisfy the following for allocations a and b that agree on all other tasks (i.e., not in

{j1, . . . , jk}):
pa(t2) − pb(t2) = λj1,...,jk

· (a − b)t2 + ζa:b,

where λj1,...,jk
> 0 and ζa:b are constants.

Proof. We show the lemma for k = 3 since the generalization is straightforward. We

first show that the λ coefficients are equal. We know that

pa(t2) − pb(t2) = λj1,j2 · (a − b)t2 + ζa:b (6.1)

pâ(t2) − pb̂(t2) = λj2,j3 · (â − b̂)t2 + ζâ:b̂ (6.2)

when a and b agree on all tasks not in {j1, j2} and â and b̂ agree on all tasks not in

{j2, j3}. But the above sets of equations overlap when a and b differ only on task

j2. Therefore λj1,j2 = λj2,j3 (we call this constant λj1,j2,j3).

The proof of the lemma for the ζ terms, is identical to the proof of the previous

lemma (the case of two tasks): Let a′ be the allocation which differs from a in task j1.

With the same argument as in the previous proof, we conclude that ζa:b = ζa:a′ +ζa′:b.

This shows that ζa:b is constant.

Angelina Vidali 96



Game-theoretic analysis of networks

The relation ∼ is symmetric and transitive and it partitions the tasks into equiv-

alence classes. Suppose for simplicity that all tasks belong to one class. Then the

mechanism is an affine minimizer (when there are at least 2 tasks). This follows

from the last lemma: Fix b = 1, i.e. in b all tasks are allocated to player 1. The

payment pb can be set arbitrarily, so we set it to some arbitrary constant γb. Then

pa(t2) = λ ·(a−b) ·t2+ζa:b+pb(t2) = −λ ·a2 ·t2−γa, where we defined γa = −ζa:b+γb

(a constant) and used λ > 0 as an abbreviation of λ1,...,m. Then the allocation for

player 1 is given by

argmin
a1

{a1t1 − pa(t2)} = argmin
a1

{a1t1 + λa2t2 + γa},

with λ and γa constants.

The above lemma allows as to partition the tasks so that each part is independent

of the other parts. Parts that have 2 or more tasks are affine minimizers. Parts that

have only 1 task are not necessarily affine minimizers.

6.4 Lower bound for 2 tasks

Although our characterization involves only decisive mechanisms and negative val-

ues, it can be extended directly to show that the approximation ratio even for two

tasks is at least 2. The following claim from [24] shows a non-decisive mechanism

for positive values has unbounded ratio:

Suppose for example that the allocation 10 does not occur for some t2, and take

the input

(

ǫ ∞
t21 ⋆ t22 ⋆

)

. Since the allocation of the first player cannot be 10 the

allocation is indicated by the stars. By monotonicity the allocation is the same for

the instance

(

ǫ ∞
t21 − ǫ ⋆ ǫ ⋆

)

. But this gives approximation ratio t21/ǫ → ∞.

The following theorem reproduces the result in [24] for any number m ≥ 2 of

tasks.

Theorem 20. No truthful mechanism for 2 players with c1 6= 0 can have a bounded

approximation ratio. Consequently any mechanism for 2 players with bounded ap-

proximation ratio is a task independent mechanism.
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Proof. The reason is that for small values of t21 and t22, the constant c1 dominates

the algebraic expressions of the mechanism and as a result the mechanism is far

from optimal.

Towards a contradiction suppose that a mechanism with c1 6= 0 has bounded

approximation ratio r. We essentially look at the one dimensional case. Specifically,

consider the case of t12 = ǫ. In this way the optimal cost for the second task is almost

zero and we can concentrate on the first task. The mechanism gives the first task

to player 1 iff t11 ≤ f00:10(t21) + c1. For the instances with t11 = f00:10(t21) + c1 ± δ,

for some arbitrarily small δ, the approximation ratio is at least max{t21,f00:10(t21)+c1}
min{t21,f00:10(t21)+c1}

.

So we must have

t21/r ≤ f00:10(t21) + c1 ≤ rt21.

Similarly, if we consider the case t22 = ǫ, we get that the first player gets the first

task iff t11 ≤ f00:10(t21), from which we can conclude that

t21/r ≤ f00:10(t21) ≤ rt21.

By subtracting the above inequalities and letting t21 to tend to 0, it is clear that the

above inequalities cannot hold unless c1 = 0.

(Notice that f00:10(t21) is independent of t22 because c1 6= 0.)

We can now show that even for 2 tasks and 2 players, no mechanism can have

approximation ratio less than 2.

Theorem 21. No mechanism for 2 players and 2 tasks has approximation ratio less

than 2.

Proof. By Theorem 20 the mechanism is task-independent except for countably

many points. If we choose a real number l at which both f01:11 = f00:10 and

f 2
01:11 = f 2

00:10 are continuous then the mechanism is task-independent(we can do

that because there are only countably many points at which one of the two func-

tions is dicontinuous). Suppose that when the processing times of both players

for the first task are both l, player 1 gets it. Then the allocation for the instance
(

l ⋆ l ⋆

l ∞

)

is indicated by the stars and the resulting approximation ratio is 2. (In

the other case we take the matrix

(

l ∞
l ⋆ l ⋆

)

)
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In fact, for 2 tasks, we can show that the only truthful mechanism which achieves

approximation ratio 2 is the VCG mechanism.

Theorem 22. The only truthful mechanism for 2 players with approximation ratio

2 is the VCG mechanism.

Proof. By symmetry, it suffices to show f01:11(t21) = t21. (We will show this for all

real numbers except for the possible jump discontinuities of the boundaries which are

at most countably many. But since the identity function has no jump discontinuities

we will finally get that f01:11(t21) = t21 for all t21 ∈ (0, +∞)) Consider the instance
(

f01:11(t21) − ǫ ⋆ t21 ⋆

t21 ∞

)

.

The second task is allocated to player 1 (otherwise the approximation ratio of the

mechanism is infinite) and the first task is also allocated to player 1 as the value

of the first player does not exceed the threshold f01:11(t21). Therefore, by letting ǫ

tend to 0, the approximation ratio is at least

f01:11(t21) + t21
t21

.

This ratio is at most 2, only when f01:11(t21) ≤ t21. Consider also the instance
(

f01:11(t21) + ǫ ∞
t21 ⋆ f01:11(t21) ⋆

)

.

(This is similar to the previous instance, where we exchanged the 2 players). By

letting ǫ tend to 0, the approximation ratio is at least

f01:11(t21) + t21
f01:11(t21)

.

This ratio is at most 2, only when f01:11(t21) ≥ t21. In conclusion, the mechanism

has approximation ratio at most 2 only when f01:11(t21) = t21.

6.5 Concluding remarks

We gave a characterization of decisive truthful mechanisms. What happens for

non-decisive mechanisms? For two tasks we have the following cases:
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Mechanisms with some oblivious player A mechanism where one player is de-

cisive and the other is not, as in Example 13.

Mechanisms decisive for only 3 allocations Our proof can be extended to this

case and shows that the only mechanisms are affine minimizers. An example

is the mechanism with only three allocations: 00, 01, 11 and f01:11(t21) = t21,

f00:01(t22) = t22, f00:11(t21 + t22) = t21 + t22 and c1 = ∞.

Mechanisms with only 2 allocations Consider the mechanism which gives ei-

ther both tasks to player 1 or both tasks to player 2. It gives both tasks to

player 1 iff t11 + t12 ≥ h(t21 + t22) for some increasing function h. This is a

mechanism which is neither affine minimizer nor task independent when h is

not linear. (In this case we treat two tasks as a single task, so things are like

in a single-parameter domain.)

Our work also gives some direction about how could this characterization be

generalized for the case of n players and threshold mechanisms, which as we show

show coincide with the additive mechanisms defined in [42], seem to play a central

role in the characterization of truthful mechanisms.
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